
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Feature extraction and selection for
automatic hate speech detection on

Twitter

João Guilherme Routar de Sousa

Mestrado Integrado em Engenharia Informática

Supervisor: Sérgio Nunes

Co-Supervisor: Paula Fortuna

March 25, 2019

c© João Guilherme Routar de Sousa, 2019

Feature extraction and selection for automatic hate
speech detection on Twitter

João Guilherme Routar de Sousa

Mestrado Integrado em Engenharia Informática

March 25, 2019

Abstract

In recent decades, information technology went through an explosive evolution, revolutionizing
the way communication takes place, on the one hand enabling the rapid, easy and almost costless
digital interaction, but, on the other, easing the adoption of more aggressive communication styles.
It is crucial to regulate and attenuate these behaviors, especially in the digital context, where these
emerge at a fast and uncontrollable pace and often cause severe damage to the targets. Social
networks and other entities tend to channel their efforts into minimizing hate speech, but the way
each one handles the issue varies. Thus, in this thesis, we investigate the problem of hate speech
detection in social networks, focusing directly on Twitter.

Our first goal was to conduct a systematic literature review of the topic, targeting mostly
theoretical and practical approaches. We exhaustively collected and critically summarized mostly
recent literature addressing the topic, highlighting popular definitions of hate, common targets
and different manifestations of such behaviors. Most perspectives tackle the problem by adopting
machine learning approaches, focusing mostly on text mining and natural language processing
techniques, on Twitter. Other authors present novel features addressing the users themselves.

Although most recent approaches target Twitter, we noticed there were few tools available that
would address this social network platform or tweets in particular, considering their informal and
specific syntax. Thus, our second goal was to develop a tokenizer able to split tweets into their
corresponding tokens, taking into account all their particularities. We performed two binary hate
identification experiments, having achieved the best f-score in one of them using our tokenizer.
We used our tool in the experiments conducted in the following chapters.

As our third goal, we proposed to assess which text-based features and preprocessing tech-
niques would produce the best results in hate speech detection. During our literature review, we
collected the most common preprocessing, sentiment and vectorization features and extracted the
ones we found suitable for Twitter in particular. We concluded that preprocessing the data is
crucial to reduce its dimensionality, which is often a problem in small datasets. Additionally, the
f-score also improved. Furthermore, analyzing the tweets’ semantics and extracting their character
n-grams were the tested features that better improved the detection of hate, enhancing the f-score
by 1.5% and the hate recall by almost 5% on unseen testing data. On the other hand, analyzing
the tweets’ sentiment didn’t prove to be helpful.

Our final goal derived from a lack of user-based features in the literature. Thus, we investigated
a set of features based on profiling Twitter users, focusing on several aspects, such as the gender
of authors and mentioned users, their tendency towards hateful behaviors and other characteristics
related to their accounts (e.g. number of friends and followers). For each user, we also generated
an ego network, and computed graph-related statistics (e.g. centrality, homophily), achieving
significant improvements - f-score and hate recall increased by 5.7% and 7%, respectively.

i

ii

Resumo

Nas últimas décadas, a tecnologia da informação atravessou uma evolução explosiva, que revolu-
cionou a forma de comunicar, permitindo uma interação digital mais fácil, rápida e quase sem
custos. Por outro lado, também facilitou a adoção de estilos comunicativos mais agressivos. É
crucial regular estes comportamentos, especialmente no contexto digital, dado que surgem a um
ritmo rápido e incontrolável e muitas vezes causam danos sérios aos alvos. As redes sociais e out-
ras entidades tendem a canalizar esforços para minimizar o discurso de ódio, mas as abordagens
diferem. Assim, nesta tese, investigamos o problema da detecção do discurso de ódio no Twitter.

O primeiro objetivo consistiu em realizar uma revisão sistemática da literatura do tema, visando
abordagens teóricas e práticas, com maior foco na segunda. Recolhemos e resumimos de forma
crítica a literatura mais recente, abordando a detecção do discurso do ódio e destacando definições
populares, alvos comuns e diferentes manifestações deste tipo de discurso. A maioria das perspec-
tivas aborda o problema usando tarefas de classificação de aprendizagem computacional, usando
metodologias de processamento de texto, com foco em plataformas de redes sociais, como o Twit-
ter. Um número reduzido de abordagens foca-se também nos utilizadores e nos seus perfis.

Embora as abordagens mais recentes tenham como alvo o Twitter, poucas ferramentas abor-
dam esta rede social ou os tweets em particular, dada a sua sintaxe informal e específica (hastags,
menções, etc). Assim, desenvolvemos um tokenizer capaz de dividir os tweets nos tokens cor-
respondentes, tendo em conta todas as suas particularidades. A nossa ferramenta demonstrou
resultados melhores em alguns parâmetros, relativamente a outros tokenizers, numa tarefa de clas-
sifcação de ódio binária.

O nosso terceiro objetivo baseou-se em avaliar quais as features baseadas em texto e técni-
cas de pré-processamento que produzem melhores resultados para a deteção de ódio. Para isso,
recolhemos um conjunto de features baseadas nas da literatura e extraímos as mais comuns de pré-
processamento, sentimento, análise semântica e vetorização que melhor se adequavam ao nosso
contexto (Twitter). Concluímos que a limpeza e o pré-processamento de dados são cruciais para
reduzir a dimensionalidade dos dados, sendo um problema recorrente em conjuntos de dados de
pequena dimensão. A análise semântica dos tweets em conjunto com os n-gramas de carateres
(em contraste com os de palavras) e técnicas de pré-processamento, demonstraram ser as features
que melhor otimizaram a deteção de ódio, ao contrário das de sentimento. A melhor combinação
de features melhorou o f-score e o hate recall em 1.5% e 5%, respetivamente, nos dados de teste.

O nosso objetivo final derivou do número reduzido de abordagens baseadas em features rela-
cionadas com os utilizadores. Desta forma, investigámos um conjunto de funcionalidades, focando
em vários aspectos, como o género de autores e dos utilizadores mencionados nos tweets, a sua
tendência relativamente a comportamentos de ódio e outras características relacionadas com os
seus perfis de utilizador (por exemplo, número de amigos e seguidores). Para cada utilizador
fizémos a geração da sua ego network e calculámos estatísticas relacionadas com a mesma (por
exemplo centralidade, homofilia), tendo obtido melhorias significativcas - aumento do f-score e
hate recall em 5.7% e 7%, respetivamente.

iii

iv

Acknowledgements

I would like to express my deepest appreciation to all those who fully supported me throughout
this journey.

- To my family, for the 24/7 support and love
- To my supervisor, prof. Sérgio Nunes and co-supervisor, Paula Fortuna, for all the guidance

and knowledge provided during the process
- To my friends, who were always free to grab a drink and talk thinks through
- To my colleagues, whom I constantly exchanged knowledge and good moments with
- To all the researchers who contributed to the topic

Guilherme Routar

v

vi

“This is how you do it: you sit down at the keyboard and you put one word after another until its
done. It’s that easy and that hard.”

Neil Gaiman

vii

viii

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Outline . 2
1.3 Language concerns . 2

2 Hate speech detection: state of the art 3
2.1 Systematic literature review . 3

2.1.1 Methodology . 3
2.1.2 Documents metadata . 4

2.2 Hate speech overview . 5
2.2.1 Origins . 5
2.2.2 Definition . 6
2.2.3 Common targets and examples . 7
2.2.4 Why study hate speech? . 8

2.3 Literature analytics . 9
2.3.1 Category . 9
2.3.2 Documents yearly distribution . 9
2.3.3 Authors frequency . 9
2.3.4 Citations frequency . 10
2.3.5 Keywords distribution . 10
2.3.6 Languages targeted . 11
2.3.7 Social networks targeted . 11
2.3.8 Machine learning approach . 12
2.3.9 Datasets . 12

2.4 Data preprocessing and feature extraction . 13
2.4.1 Text processing techniques . 13

2.4.1.1 Twitter preprocessing techniques 16
2.4.1.2 Text preprocessing summary 18

2.4.2 Feature extraction techniques . 18
2.4.2.1 General features . 19
2.4.2.2 User features . 24

2.5 Algorithms and performance metrics . 27
2.5.1 Algorithms . 27

2.5.1.1 Deep learning . 28
2.5.2 Performance metrics . 29
2.5.3 Results . 30

2.5.3.1 Waseem & Hoovy . 31
2.5.3.2 TRAC-1 . 33

ix

x CONTENTS

2.5.3.3 Germeval . 33

3 Extraction and selection of textual features 37
3.1 Dataset . 38

3.1.1 Methodology . 38
3.2 Tweets tokenization . 39

3.2.1 Common Python tokenizers . 40
3.2.2 Twikenizer: our tweet tokenizer . 41
3.2.3 Results comparison . 43

3.3 Data cleaning . 43
3.3.1 Preprocessing . 44
3.3.2 Data dimensionality analysis . 47

3.4 Feature extraction and selection . 47
3.4.1 Sentiment analysis . 48
3.4.2 Semantic analysis . 50

3.4.2.1 Combined semantic features 53
3.4.3 Vectorization . 54

3.4.3.1 N-grams analysis . 56
3.4.4 Features combination and analysis . 56

4 User Profiling 59
4.1 Dataset . 60

4.1.1 Methodology . 60
4.2 Profiling features . 61

4.2.1 Baseline . 61
4.2.2 Gender information . 62

4.2.2.1 Gender identification approach 63
4.2.2.2 Gender information features 64

4.2.3 Data augmentation . 65
4.2.3.1 User history . 65

4.2.4 User account activity . 66
4.2.5 User network . 67

4.2.5.1 Ego networks . 67
4.2.5.2 Network analysis . 70

4.2.6 Features combination and analysis . 71
4.2.6.1 Limitations . 72

5 Conclusions and Future work 75
5.1 Goals of our work . 75
5.2 Future work . 77

References 79

List of Figures

2.1 Methodology to conduct the systematic literature review 4
2.2 Frequency of approaches . 9
2.3 Frequency of combined approaches. TM: text mining, UP: user profiling 9
2.4 Number of publications by year . 10
2.5 Frequency of citations for documents published on the second half of 2017 and

most of 2018 . 10
2.6 Keywords frequency . 12
2.7 Frequency of addressed languages . 13
2.8 Social networks and their frequencies addressed on the approaches for hate speech

detection . 14
2.9 Frequency of the number of classes usually used in hate speech detection in text. 15
2.10 Most popular datasets addressed in the hate speech detection. 16
2.11 Frequency of preprocessing techniques used in hate speech detection approaches. 19
2.12 Frequency distribution of n-grams (and encodings) 20
2.13 Frequency distribution of word embeddings . 24
2.14 Algorithms’ frequency for automatic hate speech detection in text. 27
2.15 Frequency of DL architectures . 29
2.16 Frequency of RNN architectures . 29
2.17 Frequency of performance measures used in the literature. 33

3.1 Pipeline followed to test different textual features. 39
3.2 Data cleaning and preprocessing pipeline . 48
3.3 Variation of f-score with different n lower and upper bounds 56
3.4 Variation of hate recall with different n lower and upper bounds 56

4.1 Pipeline followed to test different user profiling features. 61
4.2 . 64
4.3 Gender identification pipeline. 64
4.4 Example of how users’ interactions are modeled in networks. Original users are

the authors of the tweets that are originally part of our data. Scrapped users are
the ones extracted from the originals’ lists of friends and followers. 68

4.5 Example of a user ego network and some descriptive statistics associated with the
account. The blue node, on the center of the network, is the ego (main user) and
the red ones are the alters (secondary users). 71

xi

xii LIST OF FIGURES

4.6 Variation of centrality measures according to user tendency score. The measures
on top, from left to right, are eigenvectors, degree and out degree centrality mea-
sures. The measure on the bottom, from left to right, are in degree, closeness and
betweenness centrality. For all centrality measures it is perceptible that, as users’
tendency score increases, the centrality scores decrease. 72

4.7 Variation of homophily scores according to users’ tendency score on top. From
left to right, degree pearson correlation coefficient, average neighbor degree and
average degree connectivity. On the bottom, from left to right, variation of the
authority, hubs and average clustering coefficient according to users’ tendency
score. For these, it is perceptible that, as users’ tendency score increases, the
measures drop. 73

4.8 Distribution of the network connectivity type according to the users’ tendency
score. Connected networks on right and weakly connected networks on left. As
users’ tendency score increases, networks tend to be unconnected. 74

List of Tables

2.1 Definitions of hate speech from different sources. Part of these definitions (Twitter,
Facebook, Code of conduct and ILGA) have been directly extracted from Fortuna
(2017). 6

2.2 Distribution of different types of hate found in the data. 8
2.3 Number of publications and approaches used by the most frequent authors in hate

speech detection. 11
2.4 Description of hate speech datasets. We mention the authors who created them,

the distribution of classes across the data, number of examples, language used,
platform from which the data was extracted and whether the tweets were encoded
with their ID’s (for those that apply). 17

2.5 Subsets of preprocessing techniques used by recent literature on Twitter and other
social networks . 18

2.6 Sentiment analysis features used in hate speech detection 21
2.7 PoS tagging features used in hate speech detection 21
2.8 Semantic analysis features used in hate speech detection 22
2.9 Account based user features . 26
2.10 Network related features. 26
2.11 Confusion matrix extracted from Sokolova et al. (2006) 30
2.12 Description of performance metrics and their formulas. TP: True Positives, TN:

True Negatives, FP: False Positives, FN: False Negatives. 31
2.13 Approaches used in hate speech detection in Waseem & Hoovy’s dataset. 32
2.14 Approaches used in hate speech detection in TRAC-1’s dataset. 34
2.15 Approaches used in hate speech detection in Germeval’s dataset. 35

3.1 Example of a sentence tokenization . 40
3.2 Examples of hashtags/mentions and their respective proper tokenization (how it

should be done).Note that mentions and hashtags suffer exactly the same tokeniza-
tion process. 40

3.3 Tokenization done by common Python sentence tokenizers. 41
3.4 Tokenization example for Twikenizer and NLTK’s tweet tokenizer. The differences

between both are highlighted in bold for the Twikenizer tokens 42
3.5 Running time and average f-score of the 5 folds cross validation for each tokenizer.

The running time regards the time taken to tokenize the whole corpus (11,223
tweets). Results in bold are the best for each group of features. 43

3.6 Data cleaning techniques used on tweets. 44
3.7 Performance using different data cleaning methods. 44

xiii

xiv LIST OF TABLES

3.8 Results obtained on individual preprocessing features tested against the baseline
computed on Table 3.7. Results were obtained using a term frequency bag of
words and a Logistic Regression algorithm. The ones in bold improved the base-
line. Precision and Recall concern the class hate. 46

3.9 Results obtained combining different preprocessing features with a term frequency
bag of words and tested on a Logistic Regression algorithm. Results in bold are
the best for each performance measure. Base features are lowercasing, stemming,
ignoring emojies and hashtags decomposition. 47

3.10 Sentiment score and label of example tweets. 49
3.11 Results obtained on on both individual and combined sentiment features tested

against a baseline with no (sentiment) features, all encoded with a term frequeny
bag of words and tested on a Logistic Regression algorithm. Results in bold im-
proved the baseline. Precision and recall concern the hate class. 50

3.12 Results obtained on individual semantic (punctuation) features tested against the
baseline with no (semantic) features, all encoded with a term frequency bag of
words and tested on a Logistic Regression algorithm. No results have improved
the baseline. Precision and recall concern the hate class. 51

3.13 Results obtained on both individual and combined semantic (word) features tested
against the baseline with no (semantic) features, all encoded with a term frequency
bag of words and tested on a Logistic Regression algorithm.. Results in bold
improved the baseline. Precision and recall concern the hate class. 52

3.14 Results obtained on both individual and combined semantic (character) features
tested against the baseline with no (semantic) features, all encoded with a term
frequency bag of words and tested on a Logistic Regression algorithm. Results in
bold improved the baseline. Precision and recall concern the hate class. 53

3.15 Results obtained on both individual and combined semantic (tweets) features tested
against the baseline with no (semantic) features, all encoded with a term frequency
bag of words and tested on a Logistic Regression algorithm. Results in bold im-
proved the baseline. Precision and recall concern the hate class. 54

3.16 Results obtained on semantic feature groups individually and combined tested
against the baseline with no (semantic) features, all encoded with a term frequency
bag of words and tested on a Logistic Regression algorithm. Results in bold im-
proved the baseline. Precision and recall concern the hate class. 54

3.17 Best results for each different combination of n-grams and encodings (TF and
TFIDF) tested on a Logistic Regression algorithm.Results in bold improved the
baseline. Precision and recall concern the hate class. 56

3.18 Results obtained by the different combinations of feature groups using a TF bag
of words and tested on a Logistic Regression algorithm. Results in bold concern
the experiment with the best results. Precision and recall address the hate class. . 57

3.19 Most common character and word n-grams for the hate class. 58

4.1 Results obtained for the baseline. 62
4.2 Distribution of users by gender using the name-gender approach. 63
4.3 Distribution of users by gender. 64
4.4 Results obtained for the gender information feat 65
4.5 Results obtained using the user hate score feature 66
4.6 Results obtained by the features related to users’ accounts. The ones in bold have

improved the baseline results. 67

LIST OF TABLES xv

4.7 Results obtained by different user network features. All results (in bold) have
improved the baseline performance of the model. Precision and Recall concern
the class hate. 70

4.8 Results of individual and combined user profiling features. 74

xvi LIST OF TABLES

Abreviaturas e Símbolos

ML Machine Learning
UP User Profiling
DL Deep Learning
PoS Part of speech
TF-IDF Term frequency - inverse document frequency
NER Named Entity Recognition
SVM Support Vector Machines
LR Logistic Regression
NB Naive Bayes
DT Decision Tree
GB Gradient Boosting
CNN Convolutional neural networks
RNN Recurrent neural networks
LSTM Long short-term memory
GRU Gated recurrent unit
BiLSTM Bi long short-term memory
BiGRU Bi gated recurrent unit
TP True positives
TN True negatives
FP False positives
FN False negatives
TPR True positive rate
FPR False positive rate
ROC Receiver operating characteristic
AUC Area under curve

xvii

Chapter 1

Introduction

In recent decades, information technology has been undergoing a huge evolution, with an expres-

sive adoption of online social networks and social media platforms. Such progress revolutionized

the way communication takes place by enabling a rapid, easy and almost costless digital interac-

tion between its users. Although its numerous advantages, the anonymity associated with these

interactions often leads to the adoption of more aggressive and hateful communication styles.

These emerge at a fast and uncontrollable pace and usually cause severe damage to its targets,

being crucial that governments and social network platforms are able to successfully detect and

regulate aggressive and hateful behaviors occurring on a regular basis on multiple online plat-

forms. The detection of this type of speech is far from being trivial due to the topic’s abstractness.

Therefore we propose to deliver and complement current solutions on the detection of hate speech

online, focusing on social media (Twitter). To achieve this, we focus our efforts on extracting and

selecting both textual and user-based features. The following section describes in detail the goals

of our work.

It is important to mention that this work is a continuation of another hate speech detection

dissertation. While we adopt a more technical approach, focusing mostly on feature extraction

and selection, Fortuna (2017) looked to enrich research in Portuguese by collecting a dataset in

the same language and investigating whether hierarchical classes would be helpful in optimizing

the detection of hate speech. Although both dissertations summarize the state of the art of the area,

ours targets more recent approaches, most of them conducted in 2018.

1.1 Goals

In order to complement the current solutions in hate speech detection we have two main goals,

composed of different subgoals. Firstly, we propose to collect the literature that addresses and

surrounds the topic in a methodology denoted as Systematic Literature Review. Hate speech is

an area of study included in several fields such as social sciences and law, although our goal is to

adopt a computer science and engineering methodology. Based on this approach, we include hate

speech detection in text as a subclass of text mining, generally useful for exploratory analytics,

1

2 Introduction

and natural language processing, convenient for understanding the semantic meaning conveyed in

text (e.g. semantic analysis). In order to complement both methodologies (text mining and NLP),

we will also focus on literature addressing user profiling (e.g. social network analysis).

Our second goal is divided into two different sub goals. We will conduct an exhaustive ex-

perimentation methodology, where we aim to extract and select the features that maximize the

efficiency of machine learning algorithms, typically used to classify instances of text. In order

to enrich the prediction process, the methodology will also contemplate a user profiling module,

which can be defined as a digital representation of users. Understanding how they fit and interact

in communities may be crucial knowledge in predicting their social behavior.

1.2 Outline

The dissertation is composed of five different chapters. Initially, in our first chapter, we briefly

introduce our motivation, goals and intended approaches.

The second chapter summarizes the state of the art for hate speech detection. Initially, we

present some basic statistics regarding the topic (e.g. most popular authors in 2018) and later

provide a deeper look at the most common text mining and natural language processing techniques

in hate speech detection, along with user profiling methodologies.

On the third chapter, we investigate which text-based features perform better, while on the

fourth we investigate how user-based features can improve the detection of hate speech in Twitter.

In the last chapter, we provide an overview of what we have done in this thesis, whether our

goals were concretized or not and future work.

1.3 Language concerns

This dissertation may contain a number of profane words used to describe specific examples of

the topic addressed.

Chapter 2

Hate speech detection: state of the art

This chapter provides an overall view of hate speech detection in text, addressing not only ap-

proaches through natural language processing and text mining, but also through user profiling

techniques. For this purpose, we conducted a Systematic Literature Review and tried to cover

not only practical methodologies but also theoretical ones. By collecting the literature of both

areas we aimed to link the two subjects and provide a merged approach to detect hate speech more

efficiently.

Section 2.1 describes the methodology adopted to collect the documentation addressing the

topics targeted on this thesis, also known as a systematic literature review.

Section 2.2 focuses on the theoretical definition of hate speech, it’s different types and who

are the most common targets of such aggressive communication.

Both on Section 2.3 and 2.4 we display the results of the systematic literature review. The

first one mentioned presents computed general statistics of the topic (e.g. number of publications

by year, average citations), while the latter groups qualitative results of feature extraction and

selection, including natural language processing and user profiling techniques.

2.1 Systematic literature review

A Systematic Literature Review has been conducted in order to withdraw all the documentation

and studies addressing hate speech detection in text with focus on feature selection and extraction,

a traditional machine learning approach featuring natural language processing and text mining

techniques. We generalize the term document as a synonym for articles, dissertations or any other

sort of text document.

2.1.1 Methodology

The methodology adopted to collect the state of the art was inspired on the one used by Fortuna

(2017). Figure 2.1 summarizes the whole process.

For each module described on Figure 2.1, a few nuances had to be taken into account. They

are described in the paragraphs below.

3

4 Hate speech detection: state of the art

Figure 2.1: Methodology to conduct the systematic literature review

• Keyword selection: The definition of hate speech is not linear, as described in Section

2.2. Consequently, we looked up a number of keywords that generally fit the definition of

hate. We also searched documentation in Portuguese "deteção de discurso de ódio" which

translates to hate speech detection.

• Search for documents: We gathered documents from a number of different sources (de-

tailed in Figure 2.1) that focused on the detection of hate speech through machine learning

approaches.

• Recursive search: We selected and extracted useful documents cited in the ones searched

through the keywords mentioned.

• Filtering: We only collected theoretical and text-based technical documents from July 2017

to October 2018, since the previous literature had already been summarized in Fortuna

(2017). On the other hand, we collected all user profiling articles we found to be relevant,

since this topic was not addressed on her dissertation.

2.1.2 Documents metadata

We gathered a total of 96 documents, mostly from July 2017 to October 2018. We also included

older approaches which we found to be useful for our work, especially literature addressing user

profiling. The following metrics were used to annotate and categorize the documents regardless

of their category (e.g. practical, theoretical).

• Category: The category the document belongs to: machine learning, data annotation or

analysis, theoretical and/or user profiling.

• Title

2.2 Hate speech overview 5

• Authors

• Number of citations

• Keywords

For the practical categories, in which we include all but theoretical one, extra metrics have

been collected. They are listed and described on the list below.

• Languages targeted: Language of the classified text.

• Approach: Type of machine learning problem: classification or regression.

• Social networks targeted: Social networks from which the classified text was extracted.

• Number of classes: Number of classes used on classification approaches.

• Datasets used: Origin of the data used on the document.

• Text pre-processing techniques: Pre-processing techniques applied on the data.

• Textual features extracted: Textual features extracted from the data. Includes text mining

and natural language processing techniques.

• User features extracted: User profiling techniques and features extracted from the data.

• Algorithms: Algorithms used to generate models.

• Performance metrics: Performance metrics used to classify the performance of the algo-

rithms.

• Results: Results obtained according to the performance metrics used.

2.2 Hate speech overview

Fully understanding hate speech is the first step to be able to detect such discourse. Thus, in the

following sub chapters, we address the concept itself by providing an overall view of it’s origins,

possible definitions and why we want to study it.

2.2.1 Origins

Hate speech is, approximately, a century old phenomenon. Although it occurs in various degrees

and intensities, there is no exception when it comes to its presence in all societies. One of the first

materializations of the ideology dates back to the end of the 19th century with the creation of the

Ku Klux Klan Bullard (1998). This extremist clan regrouped 3 times for different reasons (e.g.

Civil War), but their ideology always rested on strong foundations of hate.

6 Hate speech detection: state of the art

Throughout time, several other manifestations of hate emerged globally. The Holocaust is a

striking example of a nation (Nazi Germany) that spewed hatred against national minority groups

(e.g. Jews). Later on, the introduction of the internet and social network platforms (e.g. Facebook,

Twitter), on one hand, boosted the communication between people all over the world, but, on the

other, also enabled the proliferation of hate discourses.

2.2.2 Definition

The definition of hate speech is not linear, even for humans Fortuna (2017). Different backgrounds

and beliefs shape a set of distinct definitions and views, resulting in an abstract and volatile con-

cept. For this reason, we collected a set of definitions from a number of different sources, in order

to provide a global perspective of what hate speech is and what it encompasses nowadays. Table

2.1 shows the definitions contemplated and the sources they were extracted from.

Table 2.1: Definitions of hate speech from different sources. Part of these definitions (Twitter,
Facebook, Code of conduct and ILGA) have been directly extracted from Fortuna (2017).

Source Definition

Twitter

Hateful conduct: You may not promote violence against or directly attack or
threaten other people on the basis of race, ethnicity, national origin, sexual
orientation, gender, gender identity, religious affiliation, age, disability, or
disease. We also do not allow accounts whose primary purpose is inciting
harm towards others on the basis of these categories." twi

Facebook

“Content that attacks people based on their actual or perceived race, ethnicity,
national origin, religion, sex, gender or gender identity, sexual orientation,
disability or disease is not allowed. We do, however, allow clear attempts
at humor or satire that might otherwise be considered a possible threat or
attack. This includes content that many people may find to be in bad taste (ex:
jokes, stand-up comedy, popular song lyrics, etc.)." fac

Code of conduct,
between EU and companies

“All conduct publicly inciting to violence or hatred directed against
a group of persons or a member of such a group defined by reference
to race, colour, religion, descent or national or ethnic” Eur

ILGA

“Hate speech is public expressions which spread, incite, promote or
justify hatred, discrimination or hostility towards a specific group. They
contribute to a general climate of intolerance which in turn makes attacks
more probable against those given groups.” ilg

Portuguese Constitution

"To be privileged, prejudiced or deprived of any right in consequence of
descendence, gender, race, language, territory of origin, religion, political
or ideological beliefs, instruction, economical status, social condition or
sexual orientation."PTc

Paula

"Hate speech is language that attacks or diminishes, that incites violence
or hate against groups, based on specific characteristics such as physical
appearance, religion, descent, national or ethnic origin, sexual orientation,
gender identity or other, and it can occur with different linguistic styles,
even in subtle forms or when humour is used." Fortuna (2017)

Table 2.1 was partly extracted from Fortuna (2017). The first two entries are definitions pro-

posed by the social networks Facebook and Twitter that, by being the most popular ones among

web users, allow for a huge and continuous flow of information often carrying hateful content. It

is crucial that their perception of hate is clear, since they actively try to prevent and filter it on a

daily basis.

2.2 Hate speech overview 7

The third entry (Code of conduct) is the definition provided by the European Union Commis-

sion. Their role is to promote the general interest of the EU by proposing and enforcing legislation

which means they have an important role, especially within the European Union.

ILGA, International Lesbian, Gay, Bisexual, Trans and Intersex Association, is an international

group which gathers together sexual orientation and gender related minorities, aiming to protect

and defend their rights. Since these minority groups are often targets of hate discourse, ILGA tries

to protect and defend their rights.

The table entries listed above were extracted from Fortuna (2017). We opted to add two more:

• Portuguese Constitution: Since part of our work aims to enrich hate speech detection in

Portuguese, we think it is preponderant to expose the Portuguese Constitution’s definition

of hate.

• Definition proposed by Fortuna (2017): In order to homogenize and merge the definitions

together, Fortuna (2017) created a set of 4 boolean parameters (“Hate speech has specific

targets”, “Hate speech is to incite violence or hate”, “Hate speech is to attack or diminish”,

“Humour has a specific status”) to which the public definitions were evaluated to. This

allowed to come up with a more general definition of hate, being the definition we adopted.

2.2.3 Common targets and examples

Hate comes in different shapes and formats, targeting several different groups and minorities. In

Silva et al. (2016a), a systematic large scale measurement study of the main targets of hate speech

was conducted on the social media platforms Twitter and Whisper, capturing not only common

targets of hate but also their frequency on these platforms. The most common categories are listed

below.

• Race: White and black people.

• Behavior: Insecure, sensitive people.

• Sexual orientation: People whose sexual orientation is not straight, i.e. gays, lesbians,

bisexuals, etc.

• Class: Typically people belonging to lower classes, i.e. poorer.

• Gender: Commonly associated to sexism, discrimination towards women, transgenders,

etc.

• Ethnicity: Indian, Pakistani, Jews.

• Disability: Retarded people.

• Religion: Muslims, Judaists.

• Other: Drunk, shallow people.

8 Hate speech detection: state of the art

Silva et al. (2016a) collected 1% of English Twitter data (512 million tweets) from June 2014

to June 2015, of which 20,305 are considered to be hate tweets. Taking into account the categories

listed above, the percentage of hate tweets was computed for each category. Table 2.2 lists the

frequency for each category and an exemplifying tweet.

Table 2.2: Distribution of different types of hate found in the data.

Categories % Twitter posts Example tweet

Race 48.73
“Dad cuts up Water Melon for my lunch, looks at
me and says ‘Here’s your nigger food’.”

Behavior 37.05 "I don’t even bother replying to wallflowers"
Physical 3.38 "Your nose nearly poked me through my screen"
Sexual orientation 1.86 "You gays are disgusting."
Class 1.08 "You left the ghetto but the ghetto never left you"
Ethnicity 0.57 “I think I hate cardio as much as I hate paki’s”
Gender 0.56 "Back to the kitchen, woman!"
Disability 0.19 "Fucking autistic."

Religion 0.07
"I just saw someone planting a time bomb, or as
the Muslim women call it ’having a baby’"

2.2.4 Why study hate speech?

Hate speech highly impacts and undermines the right of the targeted person to equality and free-

dom. While this is enough motivation to go ahead and fight it, history has proven that it’s con-

sequences are, in the long run, potentially catastrophic if no measures are taken against it. Hate

speech promotes prejudice and hate and might shake the foundations of societies, creating gaps

between social groups which might lead to deep fractures in the social cohesion. As mentioned in

Subsection 2.2.1, the Holocaust is a striking example of such, where media and political parties

spewed hatred against national minorities, escalating a conflict that led to a mass murder.

The popularity and continuous growth of online communities has also been contributing to the

abundance of hateful behaviors. Being able to post and interact, mostly anonymously or without

providing much personal information, acts as an incentive to give away unpopular and hostile

opinions without many or any consequences at all.

Governments and especially social media have been trying to come up with efficient solutions

to avoid hate speech Nobata et al. (2016), but the lack of studies and research on automatically

identifying and detecting these behaviors makes it hard to accomplish significant results. Conse-

quently, it is rather important to contribute with solutions for automatic hate speech detection in

text.

2.3 Literature analytics 9

2.3 Literature analytics

2.3.1 Category

We have grouped the documentation gathered regarding hate speech detection by the approach the

authors conducted:

• Machine learning approach, ML, which includes feature extraction and selection and the

application of supervised classification algorithms, evaluated by certain evaluation mea-

sures. Includes both text mining (TM) and user profiling techniques (UP).

• Data analysis or annotation approach, DA, where there is a deeper analysis of the data

used or the methods used to create new datasets.

• Theoretical approach, TH, where the focus is mainly conceptual.

Although each category is well defined, part of the approaches focus on multiple elements,

e.g. a document may address both machine learning techniques and dataset annotation. Figure 2.2

shows the frequency of the approaches discriminated from each other, while figure 2.3 shows the

frequency of the composed approaches, present in the documents.

Figure 2.2: Frequency of approaches
Figure 2.3: Frequency of combined approaches.
TM: text mining, UP: user profiling

2.3.2 Documents yearly distribution

Although we only collected literature from the last couple of years, by merging the data collected

in Fortuna (2017), it is easily concluded that hate speech detection is a highly growing topic in

recent years, specially in 2018, as shown in Figure 2.4.

2.3.3 Authors frequency

The top five authors who contributed the most to hate speech detection in the last couple of years

are summarized in table 2.3, alongside their adopted approaches.

10 Hate speech detection: state of the art

Figure 2.4: Number of publications by year

2.3.4 Citations frequency

In order to have an overview of the relevance of the documentation addressing hate speech detec-

tion, we also collected the citations for each document withdrawn. Considering we mainly focused

on the last two recent years, the literature is mostly still under review and not very popular among

researchers as denoted in figure 2.5.

Figure 2.5: Frequency of citations for documents published on the second half of 2017 and most
of 2018

2.3.5 Keywords distribution

The keywords highlighted in the documentation have been collected and grouped according to the

area of knowledge they belong to. They are listed below:

• Hateful Speech: Hate Speech, Cyberbullying, Cybercrime, Free Speech, Hate Crime, Ter-

rorism, Cyberterrorism, Extremism, Cyberhate, Hate, Anger, Offensive Language, Aggres-

sive Behavior, Violence, Abusive Language, Abusive Behavior, Aggression, Bullying, Ha-

rassment, Offensive Lexicon, Profane Word, Social Media Aggression.

2.3 Literature analytics 11

Author # Publications Approaches
Mai ElSherief 4 ML, UP, TH
Ziqi Zhang 3 ML, DA
William Yang Wang 3 ML, UP, TH
Elizabeth Belding 3 ML, UP, TH
Julian Risch 3 ML

Table 2.3: Number of publications and approaches used by the most frequent authors in hate
speech detection.

• Social Media: Twitter, Micro Blogging, Online Social Networks, Facebook.

• Machine Learning: Supervised Learning, Classification, Text Classification, Document

Classification, Misogyny Detection, Automatic Misogyny Identification, Aggressiveness De-

tection.

• Natural Language Processing: Sentiment Analysis, Text Analytics, N-gram, TF-IDF, Lin-

guistic Analysis.

• Deep Learning: Recurrent Neural Networks, Neural Network, CNN, GRU, Skipped CNN,

Long Short-term memory.

• Feature Engineering: Feature Analysis, Feature Selection, Information Extraction, Text

Mining, Opinion Mining.

• User Profiling: Credibility of Users.

Figure 2.6 displays the frequency for each area of knowledge collected. Hate speech naturally

predominates considering it is the keyword we searched for. Machine Learning, Natural Language

Processing and Social media are also highly correlated with hate speech detection in text, while

User Analysis is still an area under explored.

Although we may consider Deep Learning a sub section of Machine Learning, we think it’s

important to differentiate it, since it’s usage has been increasing significantly.

2.3.6 Languages targeted

Although textual features are a limited set, they might differ from language to language. Being

English one of the most spoken languages in the world, it is also the main focus for hateful speech

detection in text as shown by figure 2.7. It is followed by Hindi and German, due to recent shared

tasks introducing such languages.

2.3.7 Social networks targeted

An overwhelming majority of publications focus their approaches on Twitter, even though there

are other social networks addressed. Figure 2.8 displays the frequency of social networks targeted

on the hate speech detection topic.

12 Hate speech detection: state of the art

Figure 2.6: Keywords frequency

2.3.8 Machine learning approach

Machine learning branches into several subcategories of problems. If we consider the data, it

may be divided into two main categories: supervised and unsupervised learning, being our focus

the first one mentioned. Supervised learning is characterized by approximating a function using

labeled data, while unsupervised learning focus is to patternize unlabeled data. Within supervised

learning, we might also consider two different categories: classification, whose goal is to identify

the category the instance belongs to, and regression, where one intends to predict a continuous

quantity Bishop (2007).

Hate speech detection in text is addressed by the whole literature as a classification machine

learning problem, although the number of classes considered varies between the approaches, as

seen in figure 2.9.

The typical approach for hate speech detection in text focuses on distinguishing between hate-

ful and non hateful instances of text. While such approach is quite common, the most frequent

are 3-class based. For the most part, this is due to a recent shared task (TRAC-1) that classifies

text as being Overtly aggressive, Covertly aggressive and Non-aggressive (e..g. Aroyehun and

Gelbukh (2018), Nikhil et al. (2018)). Instead of classifying the intensity of hate, the remaining

3-class based literature distinguishes between different classes of hate: Sexism, Racism, None (e.g.

Gröndahl et al. (2018), Zhang and Luo (2018)) and Offensive, Abusive, None (e.g. Ibrohim and

Budi (2018), Gaydhani et al. (2018)).

Part of the literature also targets multiple classes of hate (above 3). Risch et al. (2018), Schef-

fler et al. (2018), Stammbach et al. (2018), Bai et al. (2018) and Wiedemann et al. (2018) consider

a 4-class based approach: Profanity, Abuse, Insult, Other, while Qian et al. (2018b) considers a

wide range (40) of hierarchical classes.

2.3.9 Datasets

One of the issues in hate speech detection in text is the data available. Although there is a decent

collection of data as described in table 2.4, a few problems arise:

2.4 Data preprocessing and feature extraction 13

Figure 2.7: Frequency of addressed languages

• Classes targeted: part of the datasets address solely hate and non hate classes, although

a big part target different classes (e.g. sexism, racism, bullying). Having an irregular data

collection and annotation, makes it harder to standardize the identification of hate speech.

• Annotation criteria: being hate an abstract concept, as stated in section 2.2, classifying

instances of text also makes for an abstract, and eventually biased, task. Different annotators

may have a different definition of hate, thus an experiment on the same data, but differently

annotated, is prone to produce different results as described in Robinson et al. (2018).

• Availability: not all datasets created for hate detection are available publicly.

Table 2.4 briefly describes the hate datasets collected for competitions and shared tasks, high-

lighting the classes, language, total instances, source from which the data was collected and

whether the ID of the tweets is provided, useful to collect information regarding the authors of

the tweets.

2.4 Data preprocessing and feature extraction

Extracting features consists of building a set of derived values from a collection of raw data, being

a step often decisive in improving the performance of machine learning problems Jurafsky and

Martin (2014).

On this subsection we highlight a set of techniques to extract features from both text (in which

we include preprocessing approaches) and social media users, commonly used in the literature of

hate speech detection . We also mention and briefly describe algorithms and performance metrics

commonly used to classify text in this field of research.

2.4.1 Text processing techniques

Considering our target is social media, more specifically social networks such as Twitter, there’s a

big linguistic diversity in the content we may find in the platforms. Whether we focus on English,

14 Hate speech detection: state of the art

Figure 2.8: Social networks and their frequencies addressed on the approaches for hate speech
detection

Portuguese or any other language, the amount of noise in the data is substantial due to the com-

ments’ shortness and informality, usually containing useless or unknown characters, emoticons,

among other things. In any machine learning problem it is important to have clean data in order

to maximize the efficiency of the algorithms used in the classification processes. Consequently,

there’s a set of techniques that can be applied in text mining that might be relevant for the goal:

• Tokenization: is defined as slicing a stream of text into pieces, denoted as tokens. The

tokenization varies from language to language but lexical characteristics such as colloquial-

ism (e.g. "u" instead of "you"), contractions (e.g. "aren’t" instead of "are not") and others

(e.g. "O’Neil) make the task harder. This is the most common preprocessing technique

used by recent publications: Pitsilis et al. (2018), Watanabe et al. (2018), Zimmerman et al.

(2018), Zhang et al. (2018), Biere and Bhulai (2018), Kumar et al. (2018), Scheffler et al.

(2018), Pitsilis et al. (2018), Stammbach et al. (2018), Risch and Krestel (2018), Wiede-

mann et al. (2018), Schäfer (2018), Unsvåg (2018), Ahluwalia et al. (2018) and Sharma and

Kshitiz (2018). Upon tokenizing, some authors (? Founta et al. (2018)) also remove the less

frequent tokens of the data.

• Lowercasing: is the process of converting a stream of text to lowercase. Such technique

may improve the performance of the classification since it reduces the dimensionality of

the data. Not applying this technique may raise problems such as "tomorrow", "TOMOR-

ROW" and "ToMoRroW" being considered different words Aroyehun and Gelbukh (2018)

(Biere and Bhulai, 2018) (Kumar et al., 2018) (Stammbach et al., 2018) (Mishra et al.,

2018a) (Wiedemann et al., 2018) (Lee et al., 2018) (Samghabadi et al., 2018) (Unsvåg,

2018) (Sharma and Kshitiz, 2018) (Sahay et al., 2018).

• Punctuation removal: punctuation often is not relevant to text classification, so it was

removed in Aroyehun and Gelbukh (2018), Bohra et al. (2018), Kapoor et al. (2018), Nikhil

et al. (2018), Kumar et al. (2018), Stammbach et al. (2018), Roy et al. (2018), Mathur et al.

(2018), Ibrohim and Budi (2018) and Sharma and Kshitiz (2018).

2.4 Data preprocessing and feature extraction 15

Figure 2.9: Frequency of the number of classes usually used in hate speech detection in text.

• Irrelevant characters removal: Irrelevant and/or invalid characters (e.g. "?|%&!"), in

which we may also include punctuation, are also typically removed from the text since

they do not contribute to the classification task as seen in Watanabe et al. (2018), Aroyehun

and Gelbukh (2018), Zhang et al. (2018), Biere and Bhulai (2018), Sharma et al. (2018),

Stammbach et al. (2018), Frenda and Somnath (2018), Schäfer (2018) and Sahay et al.

(2018).

• Stemming: is the process of reducing inflected words to a common base form (e.g. "ponies"

turns into "poni" and "cats" into "cat"). Stemming also improves performance by reducing

the dimensionality of the data, since the words "fishing", "fished", and "fisher" are treated

as the same word "fish". This technique is used in Zhang et al. (2018), Biere and Bhulai

(2018), Scheffler et al. (2018), Maitra and Sarkhel (2018), Frenda et al. (2018), Samghabadi

et al. (2018), Gaydhani et al. (2018), Sharma and Kshitiz (2018) and Sahay et al. (2018).

• Lemmatization: although very similar to stemming, lemmatization considers the morpho-

logical analysis of the words. While stemming would shorten the words "studies" to "studi"

and "studying" to "study", lemmatization would shorten both to "study". It is used in Watan-

abe et al. (2018), Nikhil et al. (2018), Scheffler et al. (2018), Frenda et al. (2018) and Sharma

and Kshitiz (2018).

• Stopwords removal: stop words are frequently used words that carry no useful meaning

(e.g. "a", "and", "this"). Their commonness and lack of meaning makes them useless and

eventually bad for classification problems in text. They are removed in Kapoor et al. (2018),

Maitra and Sarkhel (2018), Mishra et al. (2018a), Mishra et al. (2018b), Unsvåg (2018),

Gaydhani et al. (2018), Sharma and Kshitiz (2018).

• PoS tagging: Part of speech tagging, more commonly associated with feature extraction, is

a technique to extract the part of speech associated with each word of the corpus, grammat-

ically wise. Upon doing so, it might be common to remove words belonging to certain parts

16 Hate speech detection: state of the art

Figure 2.10: Most popular datasets addressed in the hate speech detection.

of speech that might end up not being so relevant (e.g. pronouns). This is done in Watanabe

et al. (2018), Robinson et al. (2018), Scheffler et al. (2018) and Frenda and Somnath (2018).

• Emojies: are usually either removed Kapoor et al. (2018), Kumar et al. (2018), Stamm-

bach et al. (2018), Frenda et al. (2018), Ibrohim and Budi (2018)) or translated to their

correspoding description, e.g. ’:)’ is translated to ’smile’ (Bohra et al. (2018), Mathur et al.

(2018), Raiyani et al. (2018)). Keeping emojies might be useful since they usually denote a

state of spirit or sentiment.

• Spell checker: misspelling is quite common specially in online platforms due to their infor-

mal nature. Having a spell checker (Nikhil et al. (2018)) might be an important preprocess-

ing technique to avoid having unidentified or intentionally camouflaged words (e.g. "niggr",

"fck").

2.4.1.1 Twitter preprocessing techniques

As described in section 2.3.7, Twitter is the most commonly addressed social network for auto-

matic hate speech detection in text. Not because there is a higher incidence of hateful comments,

but because its API is easily accessible, making it simpler to extract data. This extracted data has a

specific format, containing usernames, URL’s, hashtags, which may have to be removed or parsed.

For this reason, there is a set of specific preprocessing techniques that are commonly applied on

Twitter comments:

• Hashtags: hashtags are a common element of tweets (e.g. "#thisisahashtag"). In Ibrohim

and Budi (2018) they are removed, but they often contain relevant information and keywords

as stated by Maitra and Sarkhel (2018) and Stammbach et al. (2018), which is why most of

the literature opts to extract their content. In Watanabe et al. (2018), Aroyehun and Gelbukh

(2018), Zhang et al. (2018), Sharma et al. (2018), Maitra and Sarkhel (2018), Risch and

Krestel (2018), Lee et al. (2018) and Mathur et al. (2018) the hashtags were decomposed

into the words that compose them, e.g. "#thisisahashtag" becomes "this is a hashtag". In

Stammbach et al. (2018), Roy et al. (2018), Schäfer (2018) and Unsvåg (2018) only the hash

symbol ("#") is removed.

2.4 Data preprocessing and feature extraction 17

Table 2.4: Description of hate speech datasets. We mention the authors who created them, the
distribution of classes across the data, number of examples, language used, platform from which
the data was extracted and whether the tweets were encoded with their ID’s (for those that apply).

Authors / Task Classes distribution Instances Language Platform Tweet ID

Waseem Zeerak
Dirk Hovy

Racism: 20%
Sexism: 12%
None: 68%

16k English Twitter x

Thomas Davidson
Dana Warmsley
Michael Macy
Ingmar Weber

Hate: 6%
Non hate: 94% 25k English Twitter

Paula Fortuna
Hate: 21%
Non hate: 79% 6k Portuguese Twitter x

Germeval
Offense: 35%
Other: 65% 5k German Twitter

TRAC-1
Overtly aggressive: 35%
Covertly aggressive: 23%
Non-aggressive: 42%

15k English Facebook

Evalita (HaSpeeDe)
Hate: 47%
No hate: 53% 4k English Twitter

Antigoni-Maria Founta
Constantinos Djouvas
Despoina Chatzakou
Ilias Leontiadis
Jeremy Blackburn
Gianluca Stringhini
Athena Vakali
Michael Sirivianos
Nicolas Kourtellis

Abusive: 13%
Spam 17%
Normal 66%

80k English Twitter x

IberEval (AMI)
Non-misogynous: 52%
Misogynous: 48% 4k English Twitter

SemEval (HatEval)
Hate: 38%
No hate: 62% 6.5k English Twitter

• Usernames, mentions removal: raw tweets always display the username associated with

the account that tweeted and sometimes may contain mentions to other users. While they

aren’t relevant for text classification itself, thus being removed by most literature (Watanabe

et al. (2018), Zimmerman et al. (2018), Scheffler et al. (2018), Stammbach et al. (2018),

Mathur et al. (2018), Ahluwalia et al. (2018), Ibrohim and Budi (2018) and Gaydhani et al.

(2018)), considering them may be helpful in generating the profiles of the users and see the

interactions between them.

• Fixed length comments: Deep learning is often addressed in the literature as stated in

Figure 2.14. Neural networks require a fixed size input, hence it is important to normalise

the length of comments. The first step is to define a maximum length, which isn’t usually too

high considering Twitter comments are usually short. In Pitsilis et al. (2018), the defined

maximum tweet size is 30 words, while in Founta et al. (2018) it is defined as the 95th

percentile of length of tweets (token wise). In both approaches, the tweets shorter than the

predefined maximum length are left padded with zeros, while the ones that overflow are

truncated.

• Emails, URL removal: raw tweets contain a set of elements that are not useful for text

classification. They are removed by all of the literature addressing twitter comments.

18 Hate speech detection: state of the art

2.4.1.2 Text preprocessing summary

The amount of existing preprocessing techniques is quite vast and highly depends on the data

being modeled. Figure 2.11 displays the frequency of all the preprocessing methods found in

the literature for hate speech detection in text. In table 2.5, the methods used by each author are

summarized. For simplicity purposes, some techniques were merged together (e.g. punctuation

removal and irrelevant/invalid characters removal) and others were omitted since they were not

relevant (e.g. Emails, URL removal).

Tokeniz. Lowercase

Punct.
/ charact.
removal Stemming

Stopwords
removal

PoS
tagging Lemmatiz.

Emoticons
parsing

Fixed
length

comments
Hashtags
parsing

Twitter
Pitsilis et al. (2018) X X
Watanabe et al. (2018) X X X X X
Robinson et al. (2018) X
Zimmerman et al. (2018) X
Zhang et al. (2018) X X X X X
Biere and Bhulai (2018) X X X X
Kapoor et al. (2018) X X X
Scheffler et al. (2018) X X X X
Sharma et al. (2018) X X
Stammbach et al. (2018) X X X X X
Frenda and Somnath (2018) X X
Mishra et al. (2018a) X X
Founta et al. (2018) X X
Mishra et al. (2018b) X X
Wiedemann et al. (2018) X X
Lee et al. (2018) X X
Frenda et al. (2018) X X X
Schäfer (2018) X X X
Unsvåg (2018) X X X X
Mathur et al. (2018) X X X
Ahluwalia et al. (2018) X
Ibrohim and Budi (2018) X X X
Gaydhani et al. (2018) X X
Sharma and Kshitiz (2018) X X X X X

Other social network platforms
Aroyehun and Gelbukh (2018) X X X X
Bohra et al. (2018) X X
Nikhil et al. (2018) X X
Kumar et al. (2018) X X X X
Maitra and Sarkhel (2018) X X X
Roy et al. (2018) X X
Risch and Krestel (2018) X X
Samghabadi et al. (2018) X X
Raiyani et al. (2018) X
Sahay et al. (2018) X X X

Table 2.5: Subsets of preprocessing techniques used by recent literature on Twitter and other social
networks

2.4.2 Feature extraction techniques

Feature extraction consists of collecting derived values (features) from the input data (text in this

specific scenario) and generating distinctive properties, hopefully, informative and non-redundant,

in order to improve the learning and generalization tasks of the machine learning algorithms. Upon

their extraction there is usually a subset of features that will contain more relevant information.

2.4 Data preprocessing and feature extraction 19

Figure 2.11: Frequency of preprocessing techniques used in hate speech detection approaches.

Selecting the right features is also a complex task but when done successfully improves the

predictive model built by the algorithms. The following subsections describe generally most of

the methodologies used to extract features from text and users.

2.4.2.1 General features

Textual features are the ones extracted from the text itself. They can be divided into different

groups, according to the area they belong to (e.g. sentimental, semantic). On the other hand, user

features represent the ones that target the user directly and the characteristics associated. Below

are described the main feature extraction approaches used in text classification and hate speech

detection in specific.

N-grams By definition, an n-gram is a contiguous sequence of (adjacent) words or letters of

length "n" extracted from text Watanabe et al. (2018). They may be characterized as word n-

grams if they group a sequence of "n" words Robinson et al. (2018), or character n-grams if they

group a sequence of "n" characters Aroyehun and Gelbukh (2018).

There are three different ways to use N-grams as a feature: encode using tfidf (term fre-

quency–inverse document frequency), as seen in Risch and Krestel (2018) and Klubicka and Fer-

nández (2018), using a simple token counter (Sharma et al. (2018)) or encode using a hashing

function.

Figure 2.12 displays how frequently n-grams (and respective encodings) are used in hate

speech detection in text.

20 Hate speech detection: state of the art

Figure 2.12: Frequency distribution of n-grams (and encodings)

TFIDF Term frequency-inverse document frequency is a numerical statistic that measures the

importance of a certain word in a data corpus. This might be an important feature in understanding

the importance of certain words to express specific types of speech (e.g. "hate") Sharma et al.

(2018). Additionally, words that typically appear often and carry less meaning (e.g. stop words)

are not as prominently considered using such encoding.

Bag of Words (BoW) Bag of words is a representation of words which disregards grammar and

the order of the words in sentences, while keeping multiplicity. Similarly to n-grams, BoW can

be encoded using tfidf Anagnostou et al. (2018), token counter or hashing function. Although it is

typically used to group textual elements as tokens (Frenda and Somnath (2018), Pamungkas et al.

(2018), de Gibert et al. (2018)), it can also group other representations such as parts of speech as

used in Anzovino et al. (2018).

Sentiment Analysis The classification of text goes beyond analytical processing. It is rather

important to grasp the sentiment behind the message, otherwise its true meaning will probably

be misunderstood and/or misinterpreted (e.g. sarcasm). Users, mainly on social media, tend to

formulate opinions on a diversity of topics, especially when they express an extremist attitude

Bermingham et al. (2009), in which we include hate speech.

Regarding social media, sentiment analysis approaches usually focus on identifying the polar-

ity (positive or negative connotation) of comments’ tokens individually Watanabe et al. (2018) and

sentences as a whole Scheffler et al. (2018), Risch and Krestel (2018), Schneider et al. (2018).

Table 2.6 describes the features related to sentiment analysis used in hate speech detection in

text.

Named Entity Recognition (NER) Named Entity Recognition aims to extract and classify

named entities in text, i.e. identify persons, locations or any other category that may be present.

This might be particularly useful in hate speech detection since hate instigators tend to target peo-

ple, groups or ethnicities (e.g. migrants), Gambäck and Sikdar (2017). Identifying entities is also

2.4 Data preprocessing and feature extraction 21

Sentiment feature Used in
Score of positive words Watanabe et al. (2018)
Score of negative words Watanabe et al. (2018)
Number of positive slang words Watanabe et al. (2018)
Number of negative slang words Watanabe et al. (2018)

Number of positive emojies
Watanabe et al. (2018), Frenda and Somnath (2018),
Risch and Krestel (2018)

Number of negative emojies
Watanabe et al. (2018), Frenda and Somnath (2018),
Risch and Krestel (2018)

Number of positive hashtags Watanabe et al. (2018)
Number of negative hashtags Watanabe et al. (2018)
Number of words with positive sentiment Nikhil et al. (2018), Salminen et al. (2018)
Number of words with negative sentiment Nikhil et al. (2018), Risch and Krestel (2018)

Comment polarity score
Robinson et al. (2018), Schneider et al. (2018),
Scheffler et al. (2018), Maitra and Sarkhel (2018),
Risch and Krestel (2018), Orasan (2018)

Table 2.6: Sentiment analysis features used in hate speech detection

usually combined with sentiment analysis in hate speech detection. As an example, Risch et al.

(2018) identifies the entities negatively mentioned.

Part of speech Part of speech tagging, also denominated as word-category disambiguation, con-

sists of labeling words with their grammatical designation (e.g. verb, adjective). The main diffi-

culty in tagging text is that each word doesn’t necessarily belong to one category of speech (e.g.

"fish" might refer to the animal, noun, or the act of fishing, verb). For this reason, the task of

identifying the part of speech is not trivial and the context of the phrase must be considered.

PoS tagging is particularly helpful in detecting hate speech in text, since hate discourse often

contains (offensive) adjectives (e.g. ugly fat boy) Scheffler et al. (2018). This feature is sometimes

also combined with sentiment analysis. In Risch et al. (2018), verbs with negative polarity are

identified.

Table 2.7 describes the features related to part of speech tagging combined with others used in

hate speech detection in text.

PoS tagging Combined feature Used in
Presence of verbs with negative polarity Sentiment Risch et al. (2018)
Check if verb with negative polarity refers to entity Sentiment + NER Risch et al. (2018)
For each PoS that may contain sentiment, replace
the token by it’s PoS + polarity
(e.g. ’coward’ - adjective_negative)

Sentiment Watanabe et al. (2018)

Number of adjectives Semantic Anzovino et al. (2018)

Table 2.7: PoS tagging features used in hate speech detection

Semantic Formal corpora obeys a set of both syntax and semantic rules, regardless of the lan-

guage they are written on. Likewise, in text classification, it might be useful to inspect both in

order to obtain good performance classifying text.

22 Hate speech detection: state of the art

While n-grams target syntax, there are other features which focus on semantics. Punctuation

may play an important role in identifying hate speech, as there is usually a bigger number of excla-

mation and interrogation marks Watanabe et al. (2018), Salminen et al. (2018). Other examples are

the identification of capitalized words Scheffler et al. (2018), Frenda and Somnath (2018)], num-

ber of swear words Salminen et al. (2018), Pamungkas et al. (2018), the length of the comment

Watanabe et al. (2018), Robinson et al. (2018), among many others.

Table 2.8 describes the features related to semantic analysis used in hate speech detection in

text.

Semantic feature Used in
Number of "!" Watanabe et al. (2018), Salminen et al. (2018)
Number of "?" Watanabe et al. (2018), Salminen et al. (2018)
Number of "." Watanabe et al. (2018)

Number of punctuation
Robinson et al. (2018), Köffer et al. (2018),
Bohra et al. (2018), Nikhil et al. (2018),
Scheffler et al. (2018)

Number of all-capitalized words
Watanabe et al. (2018), Scheffler et al. (2018),
Frenda and Somnath (2018)

Number of quotes Watanabe et al. (2018), Salminen et al. (2018)
Number of interjections Watanabe et al. (2018)
Number of laughing expressions Watanabe et al. (2018)

Number of words in tweet

Watanabe et al. (2018), Robinson et al. (2018),
Köffer et al. (2018), Nikhil et al. (2018),
Salminen et al. (2018), Frenda and Somnath (2018),
Risch and Krestel (2018)

Number of mentions Robinson et al. (2018), Anzovino et al. (2018)
Number of hashtags Robinson et al. (2018), Pamungkas et al. (2018)

Number of characters
Robinson et al. (2018), Salminen et al. (2018),
Anzovino et al. (2018), Frenda and Somnath (2018)

Number of syllables Robinson et al. (2018)
Ratio misspelled words / total words Robinson et al. (2018)
Number of misspelled words Salminen et al. (2018)
Number of emojies Robinson et al. (2018), Salminen et al. (2018)
Percentage of capitalized characters Robinson et al. (2018), Risch and Krestel (2018)
Number of capital letters Salminen et al. (2018), Frenda and Somnath (2018)
Number of sentences Köffer et al. (2018)

Number of URLs
Köffer et al. (2018), Salminen et al. (2018),
Anzovino et al. (2018), Pamungkas et al. (2018)

Average word length Köffer et al. (2018), Salminen et al. (2018)
Number of negation words Bohra et al. (2018)
Number of special characters Salminen et al. (2018)
Number of single character words Salminen et al. (2018)
Number of modal verbs Salminen et al. (2018)
Number of tokens with non-alphabetic
characters in the middle

Salminen et al. (2018)

Number of swear words
Salminen et al. (2018), Scheffler et al. (2018),
Frenda and Somnath (2018), Pamungkas et al. (2018)

Ratio swear words / all words Salminen et al. (2018)
Number of adjectives Anzovino et al. (2018)

Table 2.8: Semantic analysis features used in hate speech detection

2.4 Data preprocessing and feature extraction 23

Word embeddings Word embeddings are vector-based word representations which map related

words to closer vectors, being the most common feature used in deep learning in natural language

processing Augenstein et al. (2018). This is a feature that works well especially if the embeddings

are trained on a corpus within the same domain Stammbach et al. (2018), e.g. word embeddings

used to classify Twitter comments should be trained on Twitter corpora for better performance.

There is a set of different techniques to embed words as described below.

• Word2Vec: The granularity of the embedding is word wise, generating a vector for each

word of the corpus. There are 2 different possible models: CBOW (continuous bag of

words), that learns to predict the word by the context, and skip-grams, which is designed to

predict the context itself. According to Goldberg and Levy (2014), CBOW is faster to train

and has slightly better accuracy for the frequent words. On the other hand, skip-grams work

well with a small amount of training data and represent well even rare words or sentences.

Most of the approaches that used Word2Vec (e.g. Zhang and Luo (2018) and Kapoor et al.

(2018)) apply the skip-gram model Pennington et al. (2014).

• GloVe: This embedding model is quite frequent in the literature of hate speech detection in

text as shown in Figure 2.13. It is an unsupervised learning algorithm for obtaining vector

representation of words. Several corpora are provided to pre-train the models, including a

Twitter-based one, used in van Aken et al. (2018) and Roy et al. (2018).

• FastText: This embedding is essentially an extension of Word2Vec, except each word is

composed of character ngrams. The vector for each word is the sum of it’s character ngrams.

For example, for the word "hate" and considering an ngram with an n ranging from 3 to 5,

the sub vectors are "<ha", "hat", "hate", "hate>", "ate", "ate>", "te>". Used in Schneider

et al. (2018) and Aroyehun and Gelbukh (2018).

• BERT: BERT is a very recent word embedding that presented quite appealing results De-

vlin et al. (2018). The innovation behind BERT is that, unlike Word2Vec and GloVe, each

word isn’t restricted to a single vector, depending on their context and meaning - the same

word may have different meanings. Introducing the first deeply bidirectional unsupervised

language representation, this embedding might be a breakthrough in natural language pro-

cessing tasks.

The usage of word embeddings might be prejudicial at some point. Although most existent

word embeddings are trained on huge data collections (e.g. Google News), there is a chance they

don’t contain tokens used in the data. One common example is omitting or replacing characters

in some words (e.g. ’fuck’ becomes ’fck’ or ’random’ as ’r4ndom’). Using FastText may be ad-

vantageous because the embeddings are done character wise, instead of word wise like Word2Vec

and GloVe. Figure 2.13 displays the frequency of word embedding models used in the literature

of hate speech detection.

24 Hate speech detection: state of the art

Figure 2.13: Frequency distribution of word embeddings

Dictionaries This feature consists of comparing the data corpus to a dictionary containing words

of some kind, depending on the final objective. This might be a useful feature in hate speech de-

tection, considering there’s often an uncommon frequency of profane words Dadvar et al. (2012).

A common approach is to collect a set of swear words and check for their presence in the tweets

Salminen et al. (2018), Scheffler et al. (2018).

Topic extraction Topic extraction consists on extracting and classifying the underlying topic

addressed by the document. This comes up as a useful feature in hate speech detection since

certain topics are more commonly addressed than others in this type of discourse (e.g. Race,

Religion, Politics) Agarwal and Sureka (2017). In Wiedemann et al. (2018), the users mentioned

in the corpus are identified and their tweets are collected and the most probable topic is extracted.

User profiling Unlike all the features mentioned above, user profiling targets the users them-

selves instead of the actual text. This is a technique that hasn’t been much explored (see figure

2.6), but might output interesting results. Different approaches can be conducted in order to model

users, including users interactions within social networks, their behavior, etc. In Pitsilis et al.

(2018), the users tendency towards a specific behavior (racism or sexism) is computed. In Qian

et al. (2018a) the inter and intra user representation is also considered. Further detail is provided

in the subsection 2.4.2.2.

2.4.2.2 User features

As mentioned before, user related features is an under explored area when it comes to text clas-

sification. Most of the approaches focus on text mining and processing, ignoring inter and intra

user representation. The following paragraphs summarize the approaches used in the literature

regarding user profiling.

User history More often than not, single tweets portray little information, especially due to

their small length. This often results in classification errors. By considering users’ Twitter history,

2.4 Data preprocessing and feature extraction 25

an user profile can be generated for each author which might be helpful in classifying single

messages.

In Pitsilis et al. (2018), three parameters are created which evaluate users’ tendency towards

certain behaviors: racism, sexism and none. Such features are computed taking into account the

tweets history of each user and the class they belong to, i.e. an user with mostly sexist tweets will

have a high sexist tendency. It is not clear whether the considered tweets history regards only the

training data or the actual user Twitter profile.

In Qian et al. (2018a) an intra-user representation is generated according to the users’ history

on Twitter. For each user, a collection of recent tweets (400) is extracted. These tweets are labeled

as hateful or not hateful using a model pre-trained on the original data.

Gender information Identifying the gender of users is a feature commonly extracted in user

profiling (Klubicka and Fernández (2018), Waseem and Hovy (2016), ElSherief et al. (2018b) and

Schäfer (2018)). This might be particularly useful in detecting sexist messages, since the insti-

gators are usually men who target women. Although Twitter doesn’t provide gender information,

it can be predicted in a number of ways. Schäfer (2018) predicts the gender by comparing the

authors’ user names with a dictionary of gender labeled names. There are quite some limitations

with this approach since user names are frequently random or based on something else other than

the author’s actual name. Schneider et al. (2018) pre-trains a model based on the TwiSty corpus

Van Hee et al. (2015) and uses it to label the training data.

Account characteristics Twitter provides a set of characteristics related to the accounts them-

selves, such as the presence of a profile image, location and timezone. Although these aren’t

directly related to the user, they may unveil certain behaviors (e.g. fake accounts, with no profile

picture or personal information are more likely to engage in hateful discourse). Table 2.9 lists

account based user features.

Tweet augmentation In order to suppress noise in the target tweets, a set of similar tweets,

posted by other users, is gathered, in Qian et al. (2018a). These were selected from a large unla-

beled corpus using Locality Sensitive Hashing, an hasher able to reduce the dimensionality of the

data and, consequently, decrease the search space Indyk and Motwani (1998). This hasher enabled

the identification of the n nearest neighbours of the target tweet. This feature proved to be helpful

because some tweets may contain subtle additions that might not be easily detectable. Having a

parallel comparable corpus aids the algorithm in detecting these subtleties.

Network analysis As a social network, Twitter enables the linkage between several million

users. These connections can be expressed in the format of a graph, where the nodes represent the

users and the edges the relations between them.

26 Hate speech detection: state of the art

Account feature Source
Presence of profile image ElSherief et al. (2018b)
Presence of location ElSherief et al. (2018b)
Presence of timezone ElSherief et al. (2018b)
Enabled geo-location (to be posted alot with tweets) ElSherief et al. (2018b)
Verified account ElSherief et al. (2018b)
Length of profile description ElSherief et al. (2018b)
Length of profile name Klubicka and Fernández (2018)

Age of the account
Founta et al. (2018)
Klubicka and Fernández (2018)

Number of lists
ElSherief et al. (2018b)
Founta et al. (2018)

Number of tweets
ElSherief et al. (2018b)
Founta et al. (2018)
Klubicka and Fernández (2018)

Number of favourited tweets
Klubicka and Fernández (2018)
Founta et al. (2018)

Number of retweets ElSherief et al. (2018b)

Table 2.9: Account based user features

In Founta et al. (2018), simple computations are made concerning the amount of friends and

followers (e.g. ratio between both of the measures). Table 2.10 lists network related features

considering these measures.

Account feature Source Description

Number of friends
ElSherief et al. (2018b)
Founta et al. (2018)
Klubicka and Fernández (2018)

-

Number of followers
ElSherief et al. (2018b)
Founta et al. (2018)
Klubicka and Fernández (2018)

-

Followers/friends ratio Founta et al. (2018)
Ratio between the number of followers
and friends

Power difference between
user and mentions

Founta et al. (2018)
Popularity (followers/friends) difference
between user and mentioned users

Follower/friend reciprocity Founta et al. (2018)
Extent to which user follows back potential new
followers

Table 2.10: Network related features.

Besides the trivial computations listed in Table 2.10, there is a set of other measures which

consider the graph itself. A user graph ug has n nodes and e edges, where n is the sum of friends

and followers, plus the user himself and e is the number of connections. A graph can either be

directed, if we distinctly consider friends and followers, or undirected, if friends and followers

represent the same connection. Naturally, directed graphs enable the extraction of more insights

regarding the user data. Below are listed a set of measures computable from a directed user graph.

The descriptions have been adapted from Easley and Kleinberg (2010).

• Clustering coefficient: degree to which nodes in a graph tend to cluster together. May be

computed as the graph’s average or for single nodes. Used in Founta et al. (2018).

2.5 Algorithms and performance metrics 27

• Node degree: number of edges incident to a vertex. In directed graphs, the indegree is the

number of edges incoming to a vertex, while the outdegree is the number of edges outgoing

from a vertex.

• Network diameter: the diameter of a graph is the longest shortest path between any 2

nodes.

• Centrality: the most important nodes in the graph have usually high centrality measures.

These include betweenness, eigenvector, closeness and page rank centrality. The user for

whom the graph was generated is likely to have higher centrality values than the other ones

in the network.

2.5 Algorithms and performance metrics

2.5.1 Algorithms

As mentioned on Section 2.3.8, hate speech detection in text is mostly a supervised classification

machine learning problem. Although the range of algorithms for such problems is quite wide, there

is a smaller subset that performs better on text classification, thus being used more often. Figure

2.14 summarizes the frequency of algorithms used on automatic hate speech detection in text.

Since deep learning has a wide range of possible architectures, neural network approaches were

merged together. Figure 2.14 shows that the usage of deep learning recently has been increasing

significantly.

Figure 2.14: Algorithms’ frequency for automatic hate speech detection in text.

The algorithms used in the literature are summarized in the paragraphs below:

• Support Vector Machines: SVM’s are widely used in classification problems and the al-

gorithm can be described as an hyperplane that categorizes input data (text in this case)

Chapelle (2007), Bennett and Bredensteiner (2000). In 2017, SVM’s held the best results

for text classification tasks, but in 2018 deep learning took over, especially in hate speech

detection as described here Watanabe et al. (2018).

28 Hate speech detection: state of the art

• Logistic Regression: logistic regression is a (predictive) regression analysis which esti-

mates the parameters of a logistic model, a statistical model that uses a logistic function to

model a binary dependant variable Sperandei (2014).

• Random Forest: Random forests are a combination of tree predictors such that each tree

depends on the values of a random vector sampled independently and with the same dis-

tribution for all trees in the forest Breiman (2001). This model requires almost no input

preparation, performs implicit feature selection and is very quick to train, performing well

overall.

• Naive Bayes: This is an algorithm based on the Bayes’ theorem with strong naive indepen-

dence assumptions between the feature of the data. it generally assumes that a particular

feature in a class is unrelated to any other feature. Naive Bayes is a model useful for large

datasets and does well despite being a simple method Kaur and Oberai (2014).

• Decision Tree: This is an algorithm that provides support for decision making, providing

a tree-like model of decisions and their possible consequences and other measures (e.g.

resource cost, utility). They are often used since their output is usually readable, being

simple to understand and interpret by humans. They are also fast and perform well on large

datasets, but they are prone to overfiting Topîrceanu and Grosseck (2017).

• Gradient Boosting is a predicition model consisting of an ensemble of weak prediction

models, typically decision trees (that’s why it may also be called gradient boosted trees),

in which the predictions are not made independently (as in Bagging), but sequentially. The

sequential modeling allows for each model to learn from the mistakes made by the previous

one Natekin and Knoll (2013).

2.5.1.1 Deep learning

Deep learning popularity has been growing significantly over the recent years, especially in text

classification as seen in Figure 2.14. This is partly due to the disclosure of artificial neural net-

works’ architecture, which made it possible and easier to tune the parameters and, consequently,

model the behavior of such algorithms. This produced better results, outperforming baseline al-

gorithms as described in Section 2.5.3. The main artificial neural networks’ architectures are

described below:

• CNN, convolutional neural networks are a class of deep feed-forward artifical neural net-

works. A CNN consists of an input and output layer and multiple hidden layers which

consist of convolutional layers, pooling layers and fully connected layers Yin et al. (2017).

• RNN, recurrent neural networks, another class of artificial neural networks that, unlike

CNN’s, are able to handle sequential data, allowing to produce temporal dynamic behaviors

according to a time sequence. The connections between nodes form a directed graph. RNN’s

2.5 Algorithms and performance metrics 29

have feedback loops in the recurrent layer, which act as a memory mechanism. Despite this

fact, long-term temporal dependencies are hard to grasp by the standard architecture, be-

cause the gradient of the loss function decays exponentially with time (vanishing gradient

problem, Hochreiter (1998)). For this reason, new architectures have been introduced:

• LSTM, long short-term memory neural networks, are a type of RNN that use special

units in addition to standard units, by including a memory cell able to keep information

in memory for long periods of time. A set of gates is used to control when information

enters the memory, when it’s output, and when it’s forgotten enabling this architecture

to learn longer-term dependencies as detailed in Chung et al. (2014) and Yin et al.

(2017).

• GRU, gated recurrent unit neural networks, are similar to LSTM’s, but their structure

is slightly simpler. Although they also use a set of gates to control the flow of in-

formation, these are fewer when compared to LSTM’s Yin et al. (2017) Chung et al.

(2014).

Although both single directional LSTM and GRU’s neural network architectures are able to

handle sequential data, they fail to consider the contextual information from the future tokens.

Thus, bidirectional architectures, BiLSTM and BiGRU, were introduced, where the algorithm is

fed with the original data from the beggining to the end and vice-versa. Processing the sequence

on two opposite directions allows the neural network to consider both the previous and future

context of a single token as described in Liu et al. (2016).

According to the descriptions provided above, one would conclude that RNNs would per-

form better on text classification versus CNNs, considering words are usually connected within

a context. Figure 2.15 shows the usage of CNNs, RNNs and mixed architectures in hate speech

detection in text. Figure 2.16 descriminates which RNN architectures are the most used.

Figure 2.15: Frequency of DL architectures Figure 2.16: Frequency of RNN architectures

2.5.2 Performance metrics

A wide range of performance metrics are used to evaluate machine learning algorithms and mod-

els. These measures are originally built from a confusion matrix (see Table 2.11) that, despite not

being a performance measure by itself, serves as the basis for a number of other methods. The

30 Hate speech detection: state of the art

confusion matrix records which samples of the data have been correctly and incorrectly predicted

for each class Sokolova et al. (2006).

Table 2.11: Confusion matrix extracted from Sokolova et al. (2006)

Class \Recognized as Positive Negative

Positive True Positives (TP) False Negatives (FN)

Negative False Positives (FP) True Negatives (TN)

Accuracy is a generic performance measure that assesses the overall effectiveness of the al-

gorithm, by computing the number of correct predictions over all the predictions made. Although

it is commonly used (see Figure 2.17), accuracy doesn’t distinguish between different classes

Sokolova et al. (2006). Consequently, this performance metric may be misleading, especially

when the classes of the data are unbalanced Harrell (2017).

There is a subset of performance metrics that consider classes (e.g. Recall, Precision and

Specificity). These are usually more useful in sets of data that contain unbalanced classes, since

the performance of the algorithm can be assessed class wise. This is quite often in hate speech

datasets as described in Section 2.3.9. The most used, class wise, performance measures in hate

speech detection (Figure 2.17) are:

• Recall, also known as Sensitivity or True Positive Rate, is defined as the proportion of real

positives that are correctly predicted as positive Powers (2008).

• Precision denotes the proportion of predicted positive cases that are actually positive Powers

(2008).

The most used performance metric in hate speech detection in text is the F1 score (Figure

2.17). It is defined as the harmonic mean of Precision and Recall, and considers class imbalance,

unlike accuracy Sasaki (2007), hence it’s wide usage in hate speech detection. Table 2.12 summa-

rizes the most common performance metrics used in hate speech detection, including their formula

and most frequent usage.

Using the above mentioned performance metrics, a graphical visualization of the algorithm’s

predictions can be computed, known as ROC, receiver operating characteristic. It shows the

relation between the sensitivity and the specificity of the algorithm and is created by plotting the

true positive rate (TPR) against the false positive rate (FPR) Sokolova et al. (2006). The higher

the TPR, the higher the area under ROC, also known as AUC (area under curve), as described in

Powers (2008).

2.5.3 Results

The results obtained by the state of the art experiments for hate speech detection in text are quite

wide and rely on several different parameters. The tools chosen, libraries used and, mainly, the

distribution and characteristics of the data used in the experiments contribute to produce a variety

2.5 Algorithms and performance metrics 31

Table 2.12: Description of performance metrics and their formulas. TP: True Positives, TN: True
Negatives, FP: False Positives, FN: False Negatives.

Formula Common usage (Shung (March, 2018))

Accuracy T P+T N
T P+FP+FN+T N Balance between Precision and Recall

Precision T P
T P+FP High FP cost

Recall T P
T P+FN High FN cost

F1 score 2∗Precision∗Recall
Precision+Recall Balance between Precision and Recall for unbalanced classes

of results, which are often not comparable. Thus, and since we can not guarantee full uniformity

in the procedures used in each experiment, we can at least make sure the datasets used are the

same for each comparison we perform, ensuring a certain degree of viability.

In the following subsections we summarize the best available approaches for 3 different hate

speech datasets: Waseem & Hovy, TRAC-1 and Germeval. These have been chosen because their

popularity is quite high in the current state of the art as described in Figure 2.10, granting a wider

variety of approaches. The approaches are sorted in ascending order according to their F1-score

and for each we highlight the:

• Article

• Preprocessing techniques applied

• Features extracted

• Algorithms

• F1-score

2.5.3.1 Waseem & Hoovy

The dataset collected by Waseem & Hovy Waseem and Hovy (2016) consists of a set of 136,052

tweets, collected during a 2 months period, from which 16,914 were annotated as "Racist", "Sex-

ist" or "None", with a distribution of 12%, 20% and 68%, respectively. The class unbalance was

maintained in order to keep the realism.

The inter-annotator agreement is k = 0.84, having 85% of all disagreements occurred in anno-

tations of "Sexism".

Considering the length of the dataset and the feasibility of the annotations, this dataset has

been broadly used in hate speech detection.

Table 2.13 summarizes the approaches and techniques used on detecting hate speech in Waseem

& Hoovy’s dataset.

32 Hate speech detection: state of the art

Article Preprocessing Features Algorithms F1-score

Pitsilis et al. (2018) Tokenization
Fixed tweets’ length

- Word-based frequency vectorization
- Users tendency to sexism/racism/none LSTM 0.9320

Founta et al. (2018) Removed infrequent tokens
Fixed tweets’ length

- GloVe embedding
- Random embedding for
new words
- Number of hashtags
- Number of mentions
- Number of emojies
- Number of capitalized words
- Number of URLs
- Tweet polarity score
- Users’ popularity:
- Number of friends
- Number of followers
- Ratio between friends
and followers
- Users’ position in the network:
- Clustering coefficient
- Authority
- Eigenvector
- Closeness centrality

GRU 0.8900

Watanabe et al. (2018)

Removed URLs
Removed mentions
Removed invalid characters
Decomposed hashtags
Tokenization
Lemmatization

- Tweets polarity score
- Score of pos/neg words
- Ratio positive/negative words
- Number of pos/neg slang words
- Number of pos/neg emojies
- Number of pos/neg hashtags
- Number of exclamation/question
marks
- Number of full stops
- Number of all-capitalized words
- Number of quotes
- Number of interjections
- Number of laughing expressions
- Number of words in tweet
- Word 1-grams
- Replaced words with polarity + PoS

C4.5 0.8780

Mishra et al. (2018a)
Lowercase
Removed stopwords
Fixed tweets’ length

- Community graph
(connections between authors)
- Node2vec embedding
- Char n-grams

GRU 0.8757

Mishra et al. (2018b) Lowercase
Removed stopwords

- Char n-grams
- Augmented word-sum LSTM 0.7980

Zimmerman et al. (2018)

Removed URLs
Removed mentions
Removed numbers
Tokenization
Fixed tweets’ length

- Unknown word embedding CNN ensemble 0.7862

Qian et al. (2018a) Fixed tweets’ length

- Intra-User representation
(tweets history)
- Inter-User representation
(similar tweets collected)

BiLSTM 0.7740

Agrawal and Awekar (2018)
Removed stopwords
Removed punctuation
Lowercase

- Word 1-grams
- SSWE embedding SVM 0.77

Table 2.13: Approaches used in hate speech detection in Waseem & Hoovy’s dataset.

2.5 Algorithms and performance metrics 33

Figure 2.17: Frequency of performance measures used in the literature.

2.5.3.2 TRAC-1

TRAC-1 2018 was the first workshop on Trolling, Aggression and Cyberbullying, consisting of a

shared task on aggression identification. The data consists of a collection of 4 different datasets

from 2 different languages and 2 different platforms:

• English Facebook

• English Twitter

• Hindi Facebook

• Hindi Twitter

Our focus is the English Facebook (EF) dataset since English is a language we are more

familiar with and the Twitter one has a significantly smaller amount of data, made available for

testing purposes.

The data has 15,000 instances and each comment is annotated as "Overtly Aggressive", "Covertly

Aggressive" or "Non-aggressive" with an unbalanced unknown distribution.

Table 2.14 summarizes the approaches and techniques used on detecting hate speech in TRAC-

1’s English Facebook dataset.

2.5.3.3 Germeval

Germeval is a shared task based on offensive language identification, created in order to initiate and

foster research on the identification of offensive content in German language microposts, namely

Twitter.

The task itself consists of 2 sub tasks:

• Binary classification - 2 classes: "Offensive" and "Other".

• Fine-grained classification - 4 classes: "Profanity", "Insult", "Abuse" and "Other".

34 Hate speech detection: state of the art

Article Preprocessing Features Algorithms F1-score

Aroyehun and Gelbukh (2018)

Lowercase
Removed punctuation
Removed numbers
Removed URLs
Removed invalid characters
Decomposed hashtags
Translated emojies

- FastText embedding
- Character n-grams LSTM 0.6425

Modha et al. (2018) Fixed tweets’ length - FastText embeddings LSTM 0.6178

Golem et al. (2018)

Removed non alpha tokens
Tokenization
Lowercase
Fixed tweets’ length

- GloVe embeddings
- Presence of swear word
- Number of PoS tags
- Text length
- Number of capitalized words
- Number of named entities
- Text sentiment polarity

BiLSTM 0.616

Risch and Krestel (2018) Tokenization
Decomposed hashtags

- Number of characters
- Relative number of uppercase
characters
- Relative number of non-alpha
characters
- Relative number of exclamation
marks
- FastText embeddings

GB 0.6060

Samghabadi et al. (2018)

Lowercase
Removed URLs
Removed numbers
Stemming

- Word n-grams
- Char n-grams
- K-skip n-grams
- TF-IDF
- Word2Vec embeddings
- Sentiment mean
- Sentiment std deviation
- Gender probability

LR 0.5921

Orasan (2018) Tokenization
Emojies translation

- GloVe embeddings
- Text sentiment score
- Emojies sentiment score

RF 0.5830

Nikhil et al. (2018)

Removed punctuation
Spell checked
Lemmatization
Tokenization

- Number of words
with pos/neg sentiment
- Number of punctuations
- Total number of words
- Unknown embedding

LSTM 0.5746

Maitra and Sarkhel (2018)

Removed stopwords
Stemming
Decomposed hashtag
Fixed tweets’ length

- Word-count vectorization
- Sentiment score Autoencoder 0.5694

Roy et al. (2018)

Removed URLs
Normalized hashtags
Removed punctuation
Fixed tweets’ length

- 1-grams
- TF-IDF
- GloVe embeddings

CNN 0.5151

Table 2.14: Approaches used in hate speech detection in TRAC-1’s dataset.

2.5 Algorithms and performance metrics 35

Article Preprocessing Features Algorithms F1-score

Rother and Rettberg (2018)
Tokenization (freq >5)
Removed invalid characters
Fixed tweets’ length

- Presence of URLs
- Presence of mentions
- Random embedding

LSTM 0.8000

Schneider et al. (2018) Fixed tweets’ length

- Gender information
- Retrieved profile description
of mentioned users
- Tweets sentiment score
- Generated new training set
based on users’ friends labeled
automatically
- FastText embeddings

CNN 0.7790

Scheffler et al. (2018)

Tokenization
Stemming
Replaced URLs
Replaced mentions
Lemmatization
Removed stopwords

- Word2Vec embeddings
- Character n-grams
- TF-IDF
- Bag of words
- Number of words all capitalized
- Number of swear words
- Number of punctuations
- Tweets sentiment score

SVM 0.7700

Wiedemann et al. (2018) Tokenization
Lowercase

- FastText embeddings
- Topic extraction of mentioned
users cluster

BiLSTM-CNN 0.7749

Stammbach et al. (2018)

Tokenization
Removed punctuation
Removed invalid characters
Removed emojies
Lowercase
Normalized hashtags
Removed mentions
Fixed tweets’ length

- Heidelberg embeddings
- N-grams CNN 0.7590

Bai et al. (2018) Upsampling
Fixed tweets’ length

- Word2Vec embeddings
- Tweets length
- Number of swear words

SVM-CNN 0.7445

Schäfer (2018)

Tokenization
Removed mentions
Removed invalid characters
Normalized hashtags

- Number of swear words
- Tweets length
- Number of words starting with
uppercase
- Number of mentions
- Number of mentions on the first
half og the tweet
- Number of mentions on the second
half of the tweet
- Number of hashtags
- Number of punctuation marks
- Number of reduplications of
punctuation marks
- Number of special characters
(mostly emojies)
- Number of words with uppercase
letters
- Sentiment features

CNN 0.7369

Table 2.15: Approaches used in hate speech detection in Germeval’s dataset.

Targeting the binary classification task, the data consists of an unbalanced set of 5009 tweets,

where 34% are "Offensive" and 66% are "Other".

Table 2.15 summarizes the approaches and techniques used on detecting hate speech in Ger-

meval’s binary dataset.

36 Hate speech detection: state of the art

Chapter 3

Extraction and selection of textual
features

Our goals for this dissertation have been defined upon conducting a systematic literature review

on the topic of hate speech detection in text. We collected and grouped the literature we found to

be the most relevant in recent years (2018 and late 2017) and found some limitations surrounding

the topic that we think should be addressed in order to improve research in this area.

As mentioned in the previous section, hate speech detection was, for many years, a topic poorly

addressed, taking into account the lack of detection approaches conducted until 2017. By then,

and mostly in 2018, the topic’s attention grew significantly (see Figure 2.4). Although we consider

such growth a major breakthrough (also due to a bigger awareness from social media platforms

and society in general), the rise of that many approaches, in a short period of time, advocated

the conduction of parallel methodologies. In an attempt to optimize them, we extracted, grouped

and compared different textual features frequently used in hate speech detection, combined with

preprocessing techniques:

• Preprocessing

• Sentiment

• Semantic

• Vectorization

Besides, we also noticed that most of the natural language processing methodologies and tools

focus on text processing as a whole, instead of grouping it according to its source. Naturally,

formal text would have different nuances when compared to informal corpora, such as comments

from social network platforms. Applying the same tools on different types of text could affect the

results on classifying text or, in this case, identifying hate speech. In order to fill this gap, we also

developed a tool able to tokenize tweets specifically. We provide the results obtained compared

against state of the art tokenizers.

37

38 Extraction and selection of textual features

3.1 Dataset

The experiments described in this chapter were conducted using a subset of a Twitter dataset

originally created by Waseem and Hovy (2016). The original dataset consists of a total of 136,052

tweets, reduced to 16,914 annotated examples of three different classes: Racist, Sexist and None.

We chose this collection of tweets, since this is the most commonly used dataset in recent hate

speech detection approaches (Figure 2.10), having a high inter-annotator agreement (k = 0.84). It

was labeled by 3 people - the authors themselves and a 25 year old woman studying gender studies

and non activist feminist. Since the tweets were encoded with their respective id’s, our first step

was to extract the original content of the data, resulting in a total of 11,223 tweets, from which

25 are racist, 2,990 are sexist and 8,208 contain no type of hate. We missed out on almost 5,000

tweets since their authors had been banned by the time we performed the extraction. Considering

our goal is to perform binary classification, we merged both sexist and racist classes into a single

hate class, ending up with a total of 3,015 hateful tweets and 8,208 non hateful.

Hate class oversampling Despite having a considerable number of hateful instances (3,015),

most of these (2,990) are sexist. Conducting experiments on a dataset with such distribution

would probably lead to the creation of a model able to detect sexism but not hate in general. Thus,

in order to complement the hate class, we extracted a collection of hateful tweets from another

dataset Founta et al. (2018). We discarded any tweet that was explicitly sexist and added 210 extra

examples of hate to our dataset, resulting in a final distribution of 3,225 hate (28%) and 8,208 non

hate (72%) tweets, with a total of 11,433 examples.

3.1.1 Methodology

Since our goal in this thesis is mostly based on comparing results using different combinations of

features, we created a methodology to conduct all the necessary testing by following a traditional

train, validation and test setting commonly used in most machine learning tasks Bishop (2007).

To accomplish this, our first step consisted on splitting our data into a training set, containing 75%

of the total instances, and a testing set, containing the remaining 25%. Due to the unbalanced

distribution of classes, typical in hate speech detection datasets (Table 2.4), the split was done by

using a stratified approach, i.e. we kept a balanced number of positive (hate) and negative (no

hate) instances in each train and test split. The training data resulted in a total of 8,575 tweets,

with 2,401 hate and 6174 non hate examples, whereas the testing data resulted in a total of 2,858

tweets, with 800 hate and 2058 non hate examples.

Train, validation and test We used the training set to train and validate the features we extracted

throughout the experiments. For that matter, we performed 5 fold cross validation and computed

the average (arithmetic mean) f-score, hate class precision and recall to assess the performance

of features both individually and within each feature group, e.g. for the sentiment features we

computed the average measures obtained by the 5 different cross validation results, for each feature

3.2 Tweets tokenization 39

individually and for the best combination of sentiment features. After extracting and evaluating all

feature groups, we tested different combinations of feature groups using the testing set to obtain

the final results. Pipeline 3.1 summarizes the methodology followed to assess the experiments

conducted.

Figure 3.1: Pipeline followed to test different textual features.

3.2 Tweets tokenization

Machine learning algorithms cannot directly parse the data used in text classification problems.

Consequently, this text has to be tokenized, i.e. split into its tokens, whether the goal is to count

their frequency or group them according to some criteria (e.g. n-grams). This process is typically

simple if we address formal and structured text, such as the example shown in Table 3.1, but tweets

have nuances that make the task harder. Twitter comments tend to be unstructured, informal

and often contain hashtags, mentions, (sometimes purposefully) misspelled words (e.g. f*ck),

non-alphanumeric characters mixed in-between, abbreviations and so on. In order to be able to

successfully tokenize tweets it is important to understand the concept and structure behind both

hashtags and mentions, as described on the following paragraphs.

Mentions (similar to replies): When referring to another particular twitter user or account,

authors can use mentions. These are composed of an initial character "@", followed by an user

name (e.g. @user123). The characters following the "@" must be alphanumeric, except for "_",

which is considered to be valid. A mention containing non-alphanumeric characters is either fully

40 Extraction and selection of textual features

Table 3.1: Example of a sentence tokenization

Sentence This is a (simple) example of tokenization.

Tokens "This", "is", "a", "(", "simple", ")", "example", "of", "tokenization", "."

invalid, if such character comes immediately after the "@" (e.g. @?user123), or partially valid, if

such character doesn’t come right after the "@" (e.g. @user?123). In the last case, the mention is

only valid until the occurrence of the non-alphanumeric character. Table 3.2 shows some examples

of valid, partially valid and invalid mentions and how they should be splitted accordingly.

Table 3.2: Examples of hashtags/mentions and their respective proper tokenization (how it should
be done).Note that mentions and hashtags suffer exactly the same tokenization process.

Hashtag\Mention Tokenizer split Fully valid Partially valid Invalid
@Donald_Trump "@Donald_Trump" x
#Donald_Trump "#Donald_Trump" x
@Donald-Trump "@Donald", "-", "Trump" x
#Donald-Trump "#Donald", "-", "Trump" x
@-Donald_Trump "@", "-", "Donald", "_", "Trump" x
#-Donald_Trump "#", "-", "Donald", "_", "Trump" x
@123Trump "@123Trump" x
#123Trump "#123Trump" x
@_Trump "@_Trump" x
#_Trump "#_Trump" x

Hashtags: Hashtags are user-generated metadata tags which allow users to group related mes-

sages within a specific topic or content. For example, the hashtag #Trump contains tweets and

other content mostly related to the President of the United States, Donald Trump. Hashtags are

semantically similar to mentions. Although the initial character is an hash, "#", the following

characters must be alphanumeric with the exception of "_". Table 3.2 shows some examples of

valid, partially valid and invalid hashtags and how they should be splitted accordingly.

3.2.1 Common Python tokenizers

Being Python the programming language under which we conducted our experiments, we high-

lighted three common tokenizers developed in the same language: Spacy [ExplosionAI (2015)]

and NLTK’s both word and tweet tokenizers Steven Bird (2001b). All three tokenizers use a

different algorithm to split the tokens, hence we felt the need to understand how they behave

individually. We generated a sentence by combining different tweets containing as many tweet-

related particularities as possible (e.g. hashtags, mentions, hidden profanity) , but removed the

real user names mentioned in order to avoid identifying real users. We used the three tokenizers

aforementioned to split the sentence and compare the various approaches, as denoted by Table 3.3.

3.2 Tweets tokenization 41

Table 3.3: Tokenization done by common Python sentence tokenizers.

Generated tweet
I f*cking hate when @random_user tw33ts $hitty non_relevant g@y content!! #WakeUp

#hate-you @friend-12

NLTK word
’I’, ’f*cking’, ’hate’, ’when’, ’@’, ’random_user’, ’tw33ts’, ’$’, ’hitty’, ’non_relevant’, ’g’, ’@’, ’y’,

’content’, ’!’, ’!’, ’#’, ’WakeUp’, ’#’, ’hate-you’, ’@’, ’friend-12’

Spacy
’I’, ’f*cking’, ’hate’, ’when’, ’@random_user’, ’tw33ts’, ’$’, ’hitty’, ’non_relevant’, ’g@y’,

’content’, ’!’, ’!’, ’#’, ’WakeUp’, ’#’, ’hate’, ’-’, ’you’, ’@friend-12’

NLTK tweet
’I’, ’f’, ’*’, ’cking’, ’hate’, ’when’, ’@random_user’, ’tw33ts’, ’$’, ’hitty’, ’non_relevant’, ’g’, ’@y’,

’content’, ’!’, ’!’, ’#WakeUp’, ’#hate-you’, ’@friend’, ’-’, ’12’

Obviously, different tokenizers have diferent ways of splitting the tweet. Although the splits

are mostly well-defined we think that they fail in a few cases:

• NLTK word considers non-alphanumeric characters (except "_") to be individual tokens.

This poses a problem when identifying mentions and hashtags. In the example, in Table 3.3,

the mention @random_user is splitted into the tokens @ and random_user, while it should

preserve the mention. The same happens for hashtags (e.g. #WakeUp is tokenized into #

and WakeUp). It also splits, on one hand, g@y into g, @ and y, $hitty into $ and hitty but,

on the other, doesn’t split the token non_relevant into non, "_" and relevant.

• Spacy, on one hand, preserves the mentions but, on the other, ignores hashtags (e.g. #WakeUp

is splitted into # and WakeUp). The word $hitty is also tokenized into $ and hitty and

non_relevant kept as a whole token.

• NLTK tweet, as the name suggests, was created to specifically tokenize tweets. As ex-

pected, it tokenizes correctly all the valid hashtags and mentions of the tweet, except for

partially valid hashtags: #hate-you is tokenized as is, while it should be #hate, "-" and

you. NLTK tweet tokenizer also fails to consider words with non alphanumeric characters:

$shitty is tokenized into $ and hitty but the token non_relevant is kept, when it shouldn’t.

It is clear that the tokenizers originally available in Python fail in a few cases when splitting

tweets, being the NLTK tweet tokenizer the most accurate one for these circumstances. Thus, and

since Twitter is the social network platform most commonly addressed for hate speech detection,

we realized it would be useful to create a twitter tokenizer similar to NLTK’s that would surpass

the aforementioned limitations. We consider these limitations as such, since hateful discourse

often contains subtle hidden profanity that is unlikely to be acknowledged otherwise. Profanity is

not necessarily a synonym of hate, but they are usually associated Fortuna (2017).

3.2.2 Twikenizer: our tweet tokenizer

Taking into account the limitations mentioned before, we developed a tokenizer for Twitter, named

Twikenizer, that operates similarly to NLTK’s (tweet) but considers more cases. It’s main features

are:

42 Extraction and selection of textual features

Table 3.4: Tokenization example for Twikenizer and NLTK’s tweet tokenizer. The differences
between both are highlighted in bold for the Twikenizer tokens

.

Generated tweet
I f*cking hate when @random_user tw33ts $hitty non_relevant g@y content!! #WakeUp

#hate-you @friend-12

Twikenizer
’I’, ’f*cking’, ’hate’, ’when’, ’@random_user’, ’tw33ts’, ’$hitty’, ’non’, ’_’, ’relevant’, ’g@y’,

’content’, ’!’, ’!’, ’#WakeUp’, ’#hate’, ’-’, ’you’, ’@friend’, ’-’, ’12’

NLTK tweet
’I’, ’f’, ’*’, ’cking’, ’hate’, ’when’, ’@random_user’, ’tw33ts’, ’$’, ’hitty’, ’non_relevant’, ’g’, ’@y’,

’content’, ’!’, ’!’, ’#WakeUp’, ’#hate-you’, ’@friend’, ’-’, ’12’

• Hashtags tokens: Twikenizer considers hashtags as tokens if they are fully valid (e.g.

#hashtag). For partially valid hashtags (e.g. #hash?tag), it considers the valid hashtag

and splits the rest of the tokens (e.g. #hash, "?", tag), unlike NLTK’s that considers the full

partially valid hashtag as a token. Invalid hashtags, i.e. words that start with a hash fol-

lowed by a non-alphanumeric character (except "_"), are splitted as any other token: #-hash

is tokenized into "#", "-" and hash.

• Mentions tokens: Mentions are handled similarly to hashtags. Fully valid mentions are

tokenized as a whole token (e.g. @mention), while partially valid ones are splitted into the

valid mention plus the rest of the tokens: @mention-1 is splitted into @mention, "-" and

"1". This feature is shared with NLTK’s tweet tokenizer.

• Underscore separation: Words separated by "_" are splitted accordingly, except for hash-

tags and mentions. The word non_relevant is splitted into non, "_" and relevant. NLTK’s

tweet tokenizer considers underscores as part of the token, so the same word would be con-

sidered a whole token.

• Non-alphabetic words: Twikenizer doesn’t split words that contain both alphanumeric and

non alphanumeric characters (except for punctuation). This is the way we chose to handle

hidden profanity. The word $hitty remains as is, so does g@y. On the other hand, a word that

also contains punctuation marks is splitted accordingly: $h!t is splitted into "$", "h", "!" and

"t". This feature might be particularly useful when combined with the levenshtein distance
for profanity identication. The word f*cking, tokenized as is, has a levenshtein distance of 1

when compared to fucking. Using NLTK tweek tokenizer the same word splits into "f", "*"

and ucking. In the best case scenario (using the last token, ucking), the levenshtein distance

would be 2.

Finally, Table 3.4 shows how Twikenizer splits the tweet in comparison to NLTK’s tweek to-

kenizer. Under certain circumstances, Twikenizer can possibly be a better solution to tokenize

tweets, when compared to NLTK’s. It is expected to output the best results combined with the lev-

enshtein distance to profane words feature, in a dataset containing hidden profanity. The following

section presents the results using both Twikenizer and NLTK’s tweet tokenizer.

3.3 Data cleaning 43

3.2.3 Results comparison

In order to evaluate Twikenizer’s splitting methodology, we conducted a set of experiments and

compared the results with the ones obtained by the other tokenizers (Spacy and NLTK’s). To

achieve this, we used the dataset described in Section 3.1 and performed a stratified 5-fold cross

validation, keeping an equivalent number of instances for both positive (hateful) and negative (non

hateful) classes. We used a term frequency bag of words and a linear SVM algorithm to obtain the

average f-score for each tokenizer, as displayed in Table 3.5.

Since Twikenizer considers words containing non-alphanumeric characters, eventually mask-

ing profanity, we extracted an extra feature to test whether tokenizing such words could be useful

in improving the detection of hate speech. To accomplish this, for each tweet, we computed and

stored the minimum levenshtein distance of each token compared to 2 dictionaries of slang words

and profanity Tan (2017), Friedland (2013). Results show that using this feature with Twikenizer

can improve the detection of hate speech.

Table 3.5: Running time and average f-score of the 5 folds cross validation for each tokenizer. The
running time regards the time taken to tokenize the whole corpus (11,223 tweets). Results in bold
are the best for each group of features.

F-score (%)
Tokenizer TF BoW TF BoW + MinProfDist Running time

NLTK
Word 68.063 68.363 6.85s
Tweet 69.612 70.000 4.34s

Spacy 70.921 71.014 2.54s
Twikenizer 70.307 72.178 10.12s

3.3 Data cleaning

Considering tweets’ peculiarities and data cleaning techniques used in hate speech detection, we

used a set of tweets’ preprocessing techniques to clean the data before we transformed it further

or extracted any other feature, displayed in Table 3.6. Noise brings no predictive advantage to any

classification task and often skews the results obtained, but it is crucial to clearly identify what

may be considered noise in the data, especially in tweets. URL’s themselves are an example, since

Twitter has it’s own service of URL shortening, converting any to a prefix (http(s)://t.co/) followed

by a set of random characters (e.g. eXyu2FGR). Thus, there is no added value in considering an

URL to classify tweets, other than acknowledging their existance (as done in the semantic analysis

- Section 3.4.2). On the other hand, mentions and other user identifiers (e.g. emails, retweet tags)

may be relevant in improving the detection of hate speech, since there may be users who are more

frequently targeted by hate instigators than others.

Different data cleaning methods were combined together and tested how they would affect the

detection of hate speech. The results in Table 3.7 show that URL’s and HTML codes indeed bring

no prediction advantage, hence removing them is beneficial, as long as long as their presence is

considered in the semantic analysis. On the other hand, removing users’ identifiers significantly

44 Extraction and selection of textual features

Table 3.6: Data cleaning techniques used on tweets.

Data cleaning method Example
Removed HTML codes &, <
Removed retweet tags RT @mention
Removed URL’s http://t.co/KGT0swVfCp
Removed mentions @mention
Removed emails user@gmail.com

drops the performance of all measures in the detection of hate speech, indicating that certain users

may be more prone to being targets of hate. Thus, for the upcoming experiments, we only cleaned

the URL’s and HTML codes, keeping all the other content.

Table 3.7: Performance using different data cleaning methods.

Data cleaning feature F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

None 70.344 82.289 61.463
Removed URL’s and HTML codes 70.428 82.371 61.551
Removed users identifiers
(mentions, retweet tags, emails) 67.250 79.772 58.151

All data cleaning features 67.737 80.231 58.631

3.3.1 Preprocessing

Besides the basic data cleaning techniques applied in the previous section, we collected and ex-

tracted a set of other common preprocessing procedures, based on the ones listed in Table 2.5.

Most of these are common techniques used in natural language processing (lowercase, reduc-

tion to words’ root form and removal of words and characters), with the addition of a couple that

specifically address tweets (emojies and hashtags treatment). The groups of preprocessing features

tested are briefly described in the paragraphs below, along with their potential value in detecting

hate speech in tweets.

Lowercase All characters were converted to lowercase. This is helpful in reducing the dimen-

sionality of the data, since capitalized words are interpreted equally to non capitalized words. In

a model without characters converted to lowercase, Case, case and CASE would be interpreted

(eventually tokenized) as 3 different words. Despite it’s usefulness, hate is often correlated with

the usage of capital words and characters ElSherief et al. (2018b), hence acknowledging these may

be helpful in detecting hate speech (addressed later in the semantic analysis).

Reduction to words’ root form Reducing words to their root form consists on removing their

suffixes, by reducing the words’ inflections to their root forms. This is yet another feature usually

beneficial to the reduction of the data’s dimensionality, since words with similar meaning are

converted to the same stem Van Rijsbergen et al. (1980), e.g. the words affects, affection, affected

and affecting are converted to the stem affect using the Porter’s stemming algorithm Maitra and

3.3 Data cleaning 45

Sarkhel (2018). Although this is useful in most cases, there are exceptions in which the meaning

of the word might be altered. An example is the stemming of plane and planned, which is plane.

Planned is the past tense of to plan and plane (in this case) refers to an airplane. Although both

words share the same stem, their meaning is quite different. Aiming to reduce words to their root

form, we used 2 different techniques:

• Stemming: tokens were reduced using Porter’s stemming algorithm Maitra and Sarkhel

(2018). The resulting root form may not be a word.

• Lemmatization: the process is similar to stemming’s, although it makes sure that the root

form generated belongs to the language, using a dictionary. For that purpose, we used

WordNet’s Frenda et al. (2018).

Word and characters removal Removing certain words and characters may also be beneficial

in reducing the sparsity of the data. Stop words are words that occur frequently in text data and

typically bring no meaning to the message being passed, hence removing them is a technique

quite common in natural language processing and hate speech detection (Table 2.5). Common

approaches tend to use pre-compiled dictionaries or other methods for their dynamic identification,

however the technique used to identify them may be crucial in truly separating noise from useful

data [Saif et al. (2014)]. In our experiments we used NLTK’s stop words pre-compiled dictionary

Steven Bird (2001a). Other authors also remove characters such as non-alphanumeric ones and

punctuation. We also considered these preprocessing features in our experiments to assess how

would their removal affect the results.

Emojies treatment Emojies are pictures that accompany the text that usually symbolize emo-

tions and sentiments, whether they are true or not (e.g. sarcasm). They also tend to be useful

in identifying the message and sentiment conveyed by the text, hence most literature considers

them in their textual analysis. Aiming to assess their influence in hate speech detection, we tested

three different approaches. We removed them from the tweets, ignored their occurrence and

translated them to their description. To accomplish the latter, we used the Python library emoji

Kim and Wurster (2017) and did some further parsing. As an example. for the translated emoji

:thumbs_up:, we removed the colons both in the beginning and end of the string and split the

keywords. For the example provided, the final string would be thumbs up.

Hashtags treatment As mentioned before, hashtags are user-generated metadata that group re-

lated messages with a specific topic. These are usually helpful in identifying the topic being

addressed in that specific tweet, hence their presence may be relevant in detecting hate speech.

Aiming to test their influence in automatic hate speech detection, we considered 4 different fea-

tures. We removed them from the tweets, ignored their occurrence, simplified them by removing

their hash (e.g. #hashtag was converted to hashtag) and decomposed them. To do so, we removed

46 Extraction and selection of textual features

the hash and split the compound words into their constituents using Python’s compound-word-

splitter library Kampik (2017), e.g. #hateyou is converted to hate you. This approach poses some

limitations, since splitting streams of text into the corresponding words is an ambiguous task. For

the same hashtag, there may be multiple splitting possibilities.

Using the features described above, we conducted a set of tests to gauge how they would

influence, individually, the performance of text classification tasks. The results, displayed in Table

3.8, show that lowercasing and stemming turned out to be the preprocessing features that improved

the results the most, with an f-score increase of around 1% and 2%, respectively. While the overall

performance decreased using lemmatization, there was a slightly higher number of hate tweets

being correctly identified. On one hand, removing stopwords and non-alphanumeric characters

also contributed to slightly improve the overall results (f-score) of the model, but, on the other,

the identification of hateful tweets (recall) deteriorated by almost 1% in both cases. Removing

punctuation increased the hate class precision, however this was due to a substantial decrease of the

model’s f-score (almost -2%) and recall (almost -3%). Thus, we discarded this feature for future

experiments. Finally, regarding Twitter-related features, ignoring emojies and the decomposition

of hashtags into their compound words produced the best results out of the features considered to

handle them.

Table 3.8: Results obtained on individual preprocessing features tested against the baseline com-
puted on Table 3.7. Results were obtained using a term frequency bag of words and a Logistic
Regression algorithm. The ones in bold improved the baseline. Precision and Recall concern the
class hate.

Preprocessing feature F-score (%) Precision ((%))
(Hate class)

Recall (%)
(Hate class)

Baseline 70.428 82.371 61.551
Lowercase 71.596 82.203 63.468
Stemming 72.403 81.992 64.863
Lemmatization 70.406 81.759 61.855
Removed stopwords 70.429 83.752 60.809
Removed non-alphanumeric 70.553 84.009 60.853
Removed punctuation 68.601 82.431 58.804

Emojies
Removed 70.272 82.178 61.420
Translated 70.379 82.229 61.551

Hashtags
Removed 68.153 80.358 59.197
Simplified 70.415 82.229 61.551
Decomposed 71.196 81.783 63.076

Upon testing the extracted preprocessing features individually, we investigated further which

combinations would work out the best in our model. With that in mind, each experiment con-

ducted consisted of a set of static features, i.e. that we kept as a base, combined with others

that produced results close to the baseline (either above or below), which we considered to be

inconclusive. Lowercasing, stemming, decomposing hashtags and ignoring emojies were the

features we considered as our static ones, whereas lemmatization and the removal of stop words
the inconclusive ones. Table 3.9 shows that lemmatization slightly decreased the f-score of the

3.4 Feature extraction and selection 47

model for both experiments Xp2 and Xp4, when compared to Xp1. On the other hand, removing

stop words improved the overall performance, increasing the f-score by 0.2%, despite lowering the

hate class recall by around 0.1%. For this reason, we considered the preprocessing features used

in Xp3 to be the best for our task. The improvements over the baseline (without any preprocessing

features) were 2.7%, 1.4% and 3.6% for the f-score, hate precision and hate recall, respectively.

Table 3.9: Results obtained combining different preprocessing features with a term frequency bag
of words and tested on a Logistic Regression algorithm. Results in bold are the best for each
performance measure. Base features are lowercasing, stemming, ignoring emojies and hashtags
decomposition.

Experience F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline (no preprocessing features) 70.428 82.371 61.551
Xp1: Base features 72.889 82.551 65.299
Xp2: Base features + lemmatization 72.833 82.409 65.299
Xp3: Base features + stop words removal 73.123 83.484 65.181
Xp4: Base features + lemmatiz. + stop w. removal 73.122 83.775 64.907
Improvement over baseline (Xp3) 2.7% 1.4% 3.6%

3.3.2 Data dimensionality analysis

High dimensionality is usually a problem in classification tasks, mainly when the number of ex-

amples in the data is small compared to the number of dimensions. This translates into an ex-

ponential raise of the problem’s complexity (increasing computing time to generate the models),

leads to lack of data to efficiently train a model Bishop (2007), eventually resulting in overfit Ver-

leysen and François (2005). Cleaning and preprocessing data is one efficient method to reduce it’s

dimensionality Tang et al. (2005), as demonstrated by the pipeline in Figure 3.2. We encoded the

tweets using a term frequency bag of words and, for a total of 11,384 raw tweets, 21,946 different

features were generated - almost the double. Upon cleaning the data (removing URL’s and HTML

codes), around 1,300 features were removed and, after using the preprocessing techniques men-

tioned in the previous subsection, another 7,194 dimensions were discarded, resulting in a feature

reduction of almost 40% when compared to the original raw tweets’ dimensions.

3.4 Feature extraction and selection

Aiming to tackle the lack of uniformity in the extraction and selection of features for hate speech

detection, we identified a set of features commonly used in the field (highlighted in Section 2.4),

and extracted and selected the ones that performed better in the detection of hate in Twitter com-

ments (tweets), under the specific environment we setup: dataset chosen, number of classes con-

sidered, etc.

We grouped the sets of features according to their nature:

• Sentiment: features related to the corpus’ sentiment (e.g. tweets’ sentiment score).

48 Extraction and selection of textual features

Figure 3.2: Data cleaning and preprocessing pipeline

• Semantic: includes all the features related to the semantic of the corpora, such as the number

of words per comment, average word length, among others.

• Punctuation: considers punctuation-related features (e.g. number of exclamation marks).

• Word: features related to the words individually (e.g. average word length).

• Characters: features related to the characters individually (e.g. number of capital let-

ters).

• Twitter: twitter-related features, such as number of mentions and hashtags.

• Vectorization: includes all the features able to vectorize the tokens and characters of the

tweets (e.g. bag of words, n-grams).

3.4.1 Sentiment analysis

More often than not, and especially on social network platforms, people tend to formulate opin-

ions on a diversity of topics: reviews, ratings, recommendations, among other forms of online

expression. Identifying the sentiment(s) behind these opinions usually turns out to be useful in ex-

tracting insights from the data. The main idea behind sentiment analysis is to detect any positive

and/or negative words or expressions, relying heavily on the direct meaning of words Watanabe

et al. (2018). Explicit, extremist, hate discourse is, typically, easily identified and often conveys

a negative message, e.g. I fucking hate Muslims, but this isn’t always the case. Unfortunately,

mainly on the perspective of detection strategies, hate is often subtle and not easily noticeable For-

tuna (2017). Furthermore, regular text may contain negative words, hate synonyms or the word

(hate) itself, but the context associated may not be related to hate discourse. A good example is

the tweet: I freaking hate waking up early! My life sucks!!!. The word hate has been employed on

this generic example and the text itself has an overall negative connotation, although this is clearly

not an example of hate speech. This is why the usage of sentiment analysis techniques is arguable

3.4 Feature extraction and selection 49

for hate speech detection in text. To strengthen this claim, we manually selected 2 different tweets

from the dataset used in the experiments (described in Section 3.1).

Tweet 1, t1: @Forbes U.S. government gives them away FOR FREE... arming funding training

terrorists is what the US does best!!!!

Tweet 2, t2: Feel sorry for Annie; Lloyd. Such a bad choice. I do have soft spot for Lloyd. #mkr

According to the annotation done, the tweet t1 was labeled as hate, while t2 was labeled as non

hate. For each tweet, t1 and t2, we computed the sentiment score using a common Python library,

TextBlob Loria (2013), where the sentiment polarity score threshold goes from -1 (most negative

sentiment) to 1 (most positive sentiment), being 0 neutral. The results obtained, displayed in Table

3.10, show that, although t1 is considered to be a hateful tweet, it’s sentiment polarity score is

quite close to 1, while t2 is considered to be a negative tweet, especially due to the usage of the

words bad and sorry, with an individual sentiment polarity score of -0.5 and -0.699, respectively.

Table 3.10: Sentiment score and label of example tweets.

Polarity score Label
t1 0.7 Hate
t2 -0.274 Non hate

Considering the most common sentiment-related features implemented in hate speech detec-

tion (see Table 2.6), we selected, extracted and tested a set of features individually on our data,

described below:

Overall tweets sentiment score We computed 3 different mutually exclusive features to extract

the overall sentiment of tweets:

• Sentiment score: computed using TextBlob Loria (2013), this feature is the single overall

sentiment score of the tweet.

• Sentiment subjectivity score: also computed using TextBlob, the sentiment subjectivity

score outputs both the sentiment score of the tweet and the subjectivity of the classification.

The subjectivity introduces the concept of ambiguity when scoring the words’ sentiment.

• Multiple sentiment score: this feature was extracted using VaderSentiment Gilbert (2014).

Although it also computes the sentiment of text, it provides a wider range of outputs. For

each classification, the positive, negative, neutral and compound sentiment score is calcu-

lated, providing a more encompassing approach.

Words sentiment score The sentiment for each word was computed using TextBlob and the

results combined differently, generating a set of new features:

50 Extraction and selection of textual features

• Positive words score: for each word with a sentiment score higher than 0.2 (the threshold

goes from -1 to 1), the positive words score is incremented with the value.

• Negative words score: similar to the positive words score, but with negative words (senti-

ment score lower than -0.2).

• Positive words count: number of words with a sentiment score above 0.2.

• Negative words count: number of words with a sentiment score below -0.2.

• Slang words score: sum of the sentiment score for each slang word in the sentence.

• Positive hashtags count: number of hashtags with positive sentiment (above 0.2).

• Negative hashtags count: number of hashtags with negative sentiment (below -0.2).

• Negative verbs count: number of verbs with negative sentiment (below -0.2).

The results displayed in Table 3.11 show that sentiment-based features barely had an impact

(individually) on the classification task, where only the multiple sentiment score and slang words

score features yielded positive results in detecting hateful tweets (hate class recall). Thus, we

merged these 2 features and computed their combined performance and improvement over the

baseline. These combined features improved the baseline’s f-score, hate precision and recall by

0.3%, 0.3% and 0.2%, respectively, still not granting a significant refinement of the results as seen

in Table 3.11.

Table 3.11: Results obtained on on both individual and combined sentiment features tested against
a baseline with no (sentiment) features, all encoded with a term frequeny bag of words and tested
on a Logistic Regression algorithm. Results in bold improved the baseline. Precision and recall
concern the hate class.

Sentiment features F-score (%) Precision (%)
(Hate class)

Recal (%)l
(Hate class)

Baseline 73.123 83.484 65.181
f1: Sentiment score 73.202 83.545 65.168
f2: Sentiment subjectivity score 73.219 83.599 65.168
f3: Multiple sentiment score 73.368 83.769 65.299
f4: Positive words score 73.141 83.529 65.081
f5: Negative words score 73.114 83.610 64.994
f6: Positive words count 73.092 83.469 65.037
f7: Negative words count 73.128 83.570 65.037
f8: Slang words score 73.269 83.653 65.212
f9: Positive hashtags count 73.023 81.594 65.120
f10: Negative hashtags count 73.088 83.404 65.081
f11: Negative verbs count 73.044 83.121 65.077
f3 + f8 73.416 83.827 65.342
Improvement (f3 + f8) 0.3% 0.3% 0.2%

3.4.2 Semantic analysis

Unlike sentiment analysis, that considers only the sentiment conveyed by text, semantic analysis

actually considers every aspect of it, in an attempt to capture the real meaning of text, by identi-

fying the elements and assigning them to their logical and grammatical role. Although cleaning

3.4 Feature extraction and selection 51

and preprocessing the data is mostly beneficial, it’s inevitable to lose some, eventually valuable,

information during the process (e.g. URL’s). This is one of the reasons that makes semantic anal-

ysis useful in text classification. It is common to see the use of punctuation or employment of

capitalization associated with segregation and aggressive or even hateful discourse Watanabe et al.

(2018). A pratical example is the following tweet:

If we want the opinion of a WOMAN, we’ll ask you dear... For now keep quiet.

The usage of the capitalized word in this tweet clearly aims to emphasize the discrimination

of gender towards women. Lowercasing characters is a preprocessing feature that would ignore

this subtle occurrence. This is a single example of how keeping track of punctuation, capitalized

words, etc, might be useful in detecting hate speech online. There are a lot of possible ways to

conduct a semantic analysis. The most common features to do so, used in hate speech detection,

are summarized in Table 2.8. We have extracted and grouped them according to their category on

the following paragraphs.

Punctuation features In order to track down the occurrence of punctuation throughout the text,

we extracted 4 different features: The overall number of punctuation marks, the number of
exclamation marks, question marks and full stops. We tested each feature individually and

results, displayed in Table 3.12, show that they bring no advantage in detecting hate speech for

this dataset in particular.

Table 3.12: Results obtained on individual semantic (punctuation) features tested against the base-
line with no (semantic) features, all encoded with a term frequency bag of words and tested on
a Logistic Regression algorithm. No results have improved the baseline. Precision and recall
concern the hate class.

Punctuation features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.123 83.484 65.181
Number of exclamation marks 73.123 83.484 65.081
Number of question marks 73.123 83.484 65.081
Number of full stops 72.477 80.991 65.605
Number of punctuation marks 73.123 83.484 65.081

Word features Word-based semantic features may be relevant in classifying text, especially

considering some subtleties are discarded upon cleaning and preprocessing the data. As mentioned

before, lowercasing characters will automatically ignore any possible capital letters or words,

hence acknowledging them may be relevant. We consider a word to be a set of characters, with

a size higher than 1, containing at least 1 alphanumeric character, e.g. sh#t is considered to be a

word. Words may be 1 character long if that character is alphabetical. For each, we extracted a set

of features described below.

• Number of all-capitalized words

52 Extraction and selection of textual features

• Ratio between all-capitalized words and total number of words

• Number of words

• Number of (only) alphanumeric words

• Ratio between the number of alphanumeric words and total number of words

• Number of syllables (only alphanumeric words are considered for this task)

• Average word length

• Ratio between the number of slang words and total number of words

• Number of adjectives

• Number of interjections

For each feature listed above, we conducted individual experiments using a term frequency

bag of words and a Logistic Regression algorithm. Results, displayed in Table 3.13, show that

acknowledging capitalized words and their relative frequency in each tweet has a positive impact

on the overall performance of the model, however the identification of hateful tweets is worse

when compared to the baseline (slightly decreases by 0.02%). Thus, we considered the number of

words, ratio of slang words and number of adjectives the best semantic features assessed, being

the latter the one with higher improvements - increase of 0.4% and 0.2% of f-score and hate

recall, respectively. We conducted a final experiment using the 3 features mentioned and obtained

an overall improvement of 0.5% (f-score), and almost a 1% increase in the detection of hate, as

displayed in Table 3.13.

Table 3.13: Results obtained on both individual and combined semantic (word) features tested
against the baseline with no (semantic) features, all encoded with a term frequency bag of words
and tested on a Logistic Regression algorithm.. Results in bold improved the baseline. Precision
and recall concern the hate class.

Word features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.123 83.484 65.181
f1 Number of all capitalized words 73.060 83.455 64.994
f2 Ratio of all capitalized words 73.153 83.419 65.168
f3 Number of words 73.485 83.428 65.691
f4 Number of alphanumeric words 72.899 83.411 64.775
f5 Number of syllables 72.885 83.795 64.602
f6 Average word length 73.105 83.570 64.645
f7 Ratio slang words 73.215 82.522 65.264
f8 Number of adjectives 73.577 83.673 65.691
f9 Number of interjections 73.076 83.510 64.994
f3 + f7 + f8 73.597 83.224 65.997
Improvement (f3 + f7 + f8) 0.5% -0.3% 0.8%

Character features Character features target characters individually instead of sets or words.

For these, we extracted the number of capital letters, characters and special characters and

computed the results output by each feature individually as seen in Figure 3.14. Both the number

of capital letters (f1) and special characters (f3) features increased the overall performance of the

3.4 Feature extraction and selection 53

model (both f-score and hate detection). On the other hand, while acknowledging the number

of characters slightly improved the detection of hateful tweets, the f-score also decreased. Thus,

for our final experiment, we combined f1 and f3, having obtained a f-score and hate class recall

improvement of 0.5% and 0.7%, respectively. However, combining these features actually output

poorer results than f3 alone, with an improvement of almost 1% for both f-score and hate recall.

Table 3.14: Results obtained on both individual and combined semantic (character) features tested
against the baseline with no (semantic) features, all encoded with a term frequency bag of words
and tested on a Logistic Regression algorithm. Results in bold improved the baseline. Precision
and recall concern the hate class.

Character features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 0.73123 0.83484 0.65181
f1: Number of capital letters 73.258 83.607 65.212
f2: Number of characters 73.015 82.325 65.648
f3: Number of special characters 73.897 83.920 66.040
f1 + f3 73.613 83.456 65.866
Improvement (f3) 0.8% 0.4% 0.8%

Twitter features Finally, Twitter-based semantic features contemplate all the peculiarities re-

lated to the social network platform, for tweets in particular. The features extracted are:

• Number of mentions; as mentioned before, hate discourse is often targeted at some entity

or person in particular. Mentions are a way to address these targets.

• Number of hashtags
• Number of URL’s
• Number of emojies; hate and other extremist opinions are often complemented by emojies

Salminen et al. (2018).

The number of mentions (f1) and emojies (f4) were the only Twitter-based features that im-

proved the baseline results as seen in Table 3.15. These 2 combined resulted in a improvement of

0.5% and 0.6% of the f-score and hate recall, respectively. Note that, despite f4 output a worse

hate recall than the baseline, it boosted the identification of hate tweets when combined with f1.

3.4.2.1 Combined semantic features

Finally, using all the best punctuation, word, character and Twitter semantic features identified in

the previous paragraphs, we tested all the possible different combinations for each feature sub-

group (punctuation included). Although punctuation-based features had no positive impact on the

model individually, when combined with other features, results may improve. For this feature sub-

group we only considered the total number of exclamation and question marks, since they may be

the most representative kind of punctuation used in expressive discourses. Table 3.16 summarizes

the results obtained by each feature group in the experiments conducted in the previous subsec-

tions and the results obtained by the feature groups combined. Punctuation still didn’t contribute

54 Extraction and selection of textual features

Table 3.15: Results obtained on both individual and combined semantic (tweets) features tested
against the baseline with no (semantic) features, all encoded with a term frequency bag of words
and tested on a Logistic Regression algorithm. Results in bold improved the baseline. Precision
and recall concern the hate class.

Twitter features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.123 83.484 65.181
f1: Number of mentions 73.485 83.552 65.605
f2: Number of hashtags 73.077 83.430 65.037
f3: Number of URL’s 73.042 83.417 64.994
f4: Number of emojies 73.155 83.491 65.125
f1 + f4 73.630 83.723 65.735
Improvements (f1 + f4) 0.5% 0.2% 0.6%

to improving the results. On the other hand, the combination of semantic word (bwf) and character

(bcf) features produced the best overall results with an f-score and hate recall increase of 0.9%

and 1.4%, respectively.

Table 3.16: Results obtained on semantic feature groups individually and combined tested against
the baseline with no (semantic) features, all encoded with a term frequency bag of words and
tested on a Logistic Regression algorithm. Results in bold improved the baseline. Precision and
recall concern the hate class.

Feature subgroups F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.123 83.484 65.181

Individual
semantic
subgroups

Punctuation feats. (pctf) 73.123 83.484 65.081
Best word feats. (bwf) 73.597 83.224 65.997
Best char. feats. (bcf) 73.897 83.920 66.040
Best Twitter feats. (btf) 73.630 83.723 65.735

Combined
semantic
subgroups

pctf + bwf 73.061 82.950 65.342
pctf + bcf 73.880 83.876 66.040
pctf + btf 73.630 83.723 65.735
bwf + bcf 74.009 83.327 66.607
bwf + btf 73.904 83.811 66.127
bcf + btf 73.830 83.746 66.040
pctf + bwf + bcf 73.576 83.885 65.561
pctf + bwf + btf 73.839 83.901 65.953
bwf + bcf + btf 73.765 83.543 66.084
pctf + bwf + bcf + bft 73.938 83.806 66.171
Improvement (bwf + bcf) 0.9% -0.2% 1.4%

3.4.3 Vectorization

Most machine learning algorithms only take numeric inputs. Thus, in natural language processing,

it is required to vectorize the data (text), i.e. represent each token numerically, whether it is a word,

set of words, character or set of characters. Thus far, in all experiments conducted, the data was

encoded using a term frequency bag of words, a vectorization technique that collects the set of

tokens present in the corpus, disregarding grammar and the order in which they appear, while

3.4 Feature extraction and selection 55

keeping multiplicity Jurafsky and Martin (2014). In this subsection, we consider other approaches

using TFIDF and n-grams.

TFIDF The term frequency method (TF) accounts for the absolute frequency of the tokens in the

corpus. This was the base feature used in all the experiments previously described. The TFIDF

considers the frequency of each token according to it’s inverse frequency in the corpus. This

means that tokens with less occurrences have a weighted frequency value higher than those with

high occurrences.

N-grams The tokens bagged by bag of words depend on the n-grams used (contiguous sequence

of tokens). Word n-grams consider words, or sets of words (if n is higher than 1), as tokens, while

character n-grams consider characters, or sets of characters. In the previous experiments we used

1-grams (single tokens). In this subsection we try different combinations of n.

We conducted a significant number of experiments, where we tested different combinations of

n, with a lower bound ranging from 1 to 4 and an upper bound ranging from 1 to 6, i.e. n: [1,1], ...,

[1,6], [2,3], ..., [3,4], ..., [4,6]), along with both TF and TFIDF encodings. Similarly to the other

experiments, we used bag of words (BoW) with cleaned and preprocessed tweets and tested with

a Logistic Regression algorithm. The features used are summarized below.

• TF Word n-grams BoW

• TF Character n-grams BoW

• TFIDF Word n-grams BoW

• TFIDF Character n-grams BoW

For each experiment, we picked the best setup (lower and upper n bound) that outperformed

the others in all the performance measures listed. N-grams with significant discrepancies between

the n’s lower and upper bound (e.g. (1-6)-grams) generate a large number of additional features,

increasing exponentially the dimensionality of the training data. Thus, we limited the number of

maximum features generated by the bag of words model to the 12,000 (a value close to the number

of tweets in our dataset) most relevant by excluding tokens with both high and low frequency that

belonged to both classes. This is a process automatically done by the Python library scikit-learn

Pedregosa et al. (2011) using the CountVectorizer model and limiting the amount of features by

assigning the pre-defined value to the max_features parameter.

Results in Table 3.17 show that TF character [3,4]-grams are the features that improve the most

the detection of hate, with an increase of around 3% of the class’ recall versus the baseline. As a

consequence, the identification of non hate tweets slightly drops, with an overall decrease of the

model’s performance, with f-score dropping by 0.3%. Additionally, TFIDF encoding generally

produces worse results for all the performance measures considered versus TF.

56 Extraction and selection of textual features

Table 3.17: Best results for each different combination of n-grams and encodings (TF and TFIDF)
tested on a Logistic Regression algorithm.Results in bold improved the baseline. Precision and
recall concern the hate class.

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.123 83.484 65.181
xp1 TF Word [1,6]-grams BoW 73.181 82.566 65.735
xp2 TF Character [3,4]-grams BoW 72.783 77.722 68.438
xp3 TFIDF Word 1-grams BoW 65.168 89.893 51.132
xp4 TFIDF Character [1,2]-grams BoW 67.515 88.273 54.707

Improvements (xp2) -0.3% -5.8% 3.2%

3.4.3.1 N-grams analysis

We plotted the results for both word and character n-grams for each n lower and upper bound

considered in the experiments, as seen in Figure 3.3 and 3.4. We observed that word n-grams

obtain the best results for small values of n’s lower bound, likely due to tweet’s typically short

length, informality and lack of structure, along with the presence of typos and diminutives, making

it harder to find sets of words often occurring together. Additionally, single words are more likely

to portray hate than their combinations. We also observed that the performance of the model

using word n-grams drops significantly for each increment of n’s lower bound. On the contrary,

character n-grams achieved better results for higher values of n, outperforming word n-grams in

all performance measures and for most combinations of n. This is the case because single or

pairs of characters aren’t long enough to portray relevant information. Overall, character n-grams

(encoded with TF) are a better choice in hate speech detection in tweets.

Figure 3.3: Variation of f-score with different n
lower and upper bounds

Figure 3.4: Variation of hate recall with different
n lower and upper bounds

3.4.4 Features combination and analysis

We conducted a set of final experiments on the testing set, using different combinations of the

feature groups (with the best individual features) extracted in the previous subsections. These

experiments are relevant since we can observe how these features perform when combined together

3.4 Feature extraction and selection 57

on unseen data. We computed a baseline without any features, except for a term frequency bag

of words to compare the results obtained by the different combinations. For all experiments we

used a TF encoding, since it outperformed TFIDF in all previous tests. The combinations tested

are summarized below:

• Baseline: No features, except for a TF bag of words

• c1: Data cleaning and best preprocessing features (DCPP) , Table 3.9.

• c2: DCPP + best sentiment features (Sent), Table 3.11.

• c3: DCPP + best semantic features (Sem) , Table 3.16.

• c4: DCPP + character [3,4]-grams (CG34), Table 3.17.

• c5: DCPP + Sem + CG34.

• c6: DCPP + Sent + CG34.

• c7: All features (DCPP + Sent + Sem + CG34).

Table 3.18 shows the results achieved by the different combinations of features. Despite im-

proving baseline’s performance measures, sentiment features slightly decreased the overall perfor-

mance of the model when combined with semantic and character n-grams. Experiment c5 achieved

the best results with an f-score and hate recall improvement of 1.5% and 4.6%, respectively, in

detriment of the class’ precision, with a 3% drop. Results show that cleaning and preprocessing

tweets, analyzing their semantic and extracting common sets of characters (n-grams) tend to be

relevant techniques to improve the detection of hate speech on Twitter. While sentiment analysis

techniques may also contribute to such improvements, their use prejudiced the predictions of the

model, strengthening the claim that these features are arguable in hate detection tasks Watanabe

et al. (2018).

Table 3.18: Results obtained by the different combinations of feature groups using a TF bag of
words and tested on a Logistic Regression algorithm. Results in bold concern the experiment with
the best results. Precision and recall address the hate class.

Features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 73.989 84.202 65.985
c1 DCPP 74.512 84.580 66.586
c2 DCPP + Sent 74.680 84.627 66.826
c3 DCPP + Sem 75.921 83.866 69.350
c4 DCPP + CG34 75.243 81.895 69.591
c5 PP + Sem + CG34 75.498 81.189 70.552
c6 PP + Sent + CG34 75.242 81.398 69.951
c7 All features 75.532 81.589 70.312

Improvement (c4) 1.5% -3% 4.6%

To better understand which words and sets of characters were prominent for the hate class, we

generated the 10 most common n-grams in our data for this class, displayed in Table 3.19. We

chose the n’s lower and upper bound that output the best results on previous experiments (Table

3.17), character [3,4]-grams and word [1,2]-grams. It is clear that sexism is quite incident in this

58 Extraction and selection of textual features

dataset with n-grams such as girl, sexi, xist, girl cook and sexist. On the other hand, n-grams such

as idiot, idio, hate, fuc point out to a more generalized type of hate, including profanity and insults.

Table 3.19: Most common character and word n-grams for the hate class.

Char [3,4]-grams Word [1,2]-grams
cook cook
hick girl cook
hole whole
girl idiot
sexi half bird
chic mkr
idio chicken
xist im not
mkr hate
fuc sexist

Chapter 4

User Profiling

On the previous chapter we provided an overview of which text-based features generally perform

better in hate speech detection on Twitter. Although the processing of natural language is the most

common technique used to classify text, Twitter allows for the introduction of a new set of features,

related to the authors of the text, or tweets in this case. As mentioned before, user profiling is an

under-explored area in hate speech detection, mostly due to the limitations associated with the

extraction of users’ characteristics, which are further explained in Section 4.2.6. Thus, in Chapter

4, we aim to enrich research on the detection of hate speech on Twitter, by exploring a set of user

profiling methodologies that have been poorly or not addressed at all before. For this matter, we

explored a set of features briefly described below:

• Gender information: We identified the gender of the authors who posted the tweets and

the users mentioned in those. The first feature mentioned proved to achieve good results

in the detection of hate speech Waseem and Hovy (2016). We investigated further whether

considering the gender of the mentioned users is also relevant for the task.

• Users’ Twitter history: Tweets are considerably short which makes it hard to identify

relevant nuances that can be interpreted as hateful. Having users’ tweets history analyzed

eases the process of identifying the nature of a certain tweet. Using their posts history, we

generated a tendency towards hateful behaviors score.

• Users’ Twitter account characteristics: The characteristics of the account belonging to

the user who posted the tweet may portray relevant information about the user himself (e.g.

number of friends, followers).

• Users’ Twitter network: Similarly to the user account’s characteristics, generating a user’s

network of interactions between him and other users (friends and followers) may help pre-

dicting behavior and interaction patterns of users with a tendency towards hate.

In the following subsections we provide more in-depth details of each feature extracted and

the results they achieved, along with the methodology used to conduct such experiments.

59

60 User Profiling

4.1 Dataset

For the experiments described in the following sections, we used a subset of the data used in the

previous chapter (more details provided on Section 3.1). Twitter enforces rate limits for the usage

of it’s API, making it unviable (time wise) to extract the networks of almost 8,000 different users.

In order to extract an ego network of an user with 1,000 friends and 1,000 followers (see Section

4.2.5.1 for further detail on ego networks), we need to extract each friend and follower’s list of

connections, resulting in a total of 2,001 API calls required to generate the network; 1 for the

main user, 1 for each of his friends and another for each of his followers. Twitter limits such

request to 120 calls per hour, thus, in order to reduce the time consumed extracting content from

the social network platform, we only extracted tweets (from the previous dataset - Section 3.1),

whose authors had a total sum of friends and followers lower than 400. This resulted in a dataset

with a total of 1,318 tweets and 760 different users (around two tweets per author), with 920 non

hateful instances, 234 examples of sexism, 160 hateful tweets and 3 racist ones. The last 3 classes

mentioned were merged together and converted into a single hateful one, resulting in a total of 920

negative (non-hateful) classes and 397 positive (hateful) classes.

Data augmentation In order to increase the size of the data used in the experiments, we scrapped,

for each user, the 5 most recent tweets posted on their timeline, resulting in a total of 3,740

scrapped tweets. These were automatically annotated using a pre-trained model created in Waseem

and Hovy (2016). We chose this approach, since this was a highly cited (138 citations) hate speech

detection article, where the authors collected a dataset of tweets and predicted the hateful ones

with good results (f-score=0.7389), using character n-grams and gender information. Besides, the

model was trained on a larger corpus. Despite being a 3-class classification task (sexism, racism

and neither), we merged sexism and racism into a single hateful class, resulting in a total of 428

hateful and 3,312 non hateful automatically annotated tweets. We complemented our dataset with

all the hateful tweets and, due to the highly unbalanced distribution of the automatically labeled

classes, we only included 1,000, randomly sampled, non hateful scrapped tweets. The final dataset

resulted in 825 examples of hate and 1,920 examples of non hate, with a total of 2,745 instances.

4.1.1 Methodology

We followed a similar testing methodology as the one described on Section 3.1.1, by splitting the

data (using a stratified approach) into a training and testing set, containing 75% and 25% of the

original data, respectively. The training set resulted in a total of 2,059 tweets with 618 examples

of hate, whereas the testing set resulted in a total of 686 tweets with 206 examples of hate.

Train, validation and test We used the training set to train and validate the features we extracted

throughout the experiments. For that matter, we performed 4 fold cross validation and computed

the average (arithmetic mean) f-score, hate class precision and recall for each fold, to assess the

performance of each feature. We chose a lower number of folds (compared to Chapter 3.1.1) due

4.2 Profiling features 61

to the lower number of instances. In the end, we tested different combinations of features using

the test set to obtain the final results. Pipeline 4.1 summarizes the methodology followed to assess

the experiments conducted.

Figure 4.1: Pipeline followed to test different user profiling features.

4.2 Profiling features

4.2.1 Baseline

In order to test the different user profiling features extracted, we set up a baseline experiment to be

able to compare the results obtained. For this task, we used similar features as the ones described

on the previous section, i.e. data cleaning, preprocessing and TF vectorization with character

n-grams. Since the data used on these experiments is quite different from the one used on the

previous chapter, we tested other combinations of features:

62 User Profiling

• Preprocessing: we included all the data cleaning techniques described on Section 3.3, but,

regarding the preprocessing features, we converted the tweets to lowercase, stemmed and

lemmatized them, removed stopwords and decomposed hashtags.

• Vectorization: we used a TF bag of words model with a character [3,4]-grams model.

• Algorithm: SVM with a radial basis fuction (rbf) kernel.

The results obtained using the features described above are detailed in Table 4.1.

Table 4.1: Results obtained for the baseline.

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.724 71.910 64.000

4.2.2 Gender information

Bullies typically address targets based on the perceived or actual ethnicity, behavior, physical char-

acteristics, sexual orientation, class or gender Silva et al. (2016b). Thus, identifying these traits

can be helpful in detecting hate speech as observed by Waseem and Hovy (2016) and [Klubicka

and Fernández (2018), where gender information, combined with word n-grams outputs better

results than just word n-grams. The main limitation of using gender-based features is that Twitter

doesn’t provide gender information of it’s users, hence it needs to be somehow inferred. There are

two main techniques to identify the gender of Twitter users, described below:

• User names: most approaches compare the authors’ user names with a dictionary of gender-

labeled users Waseem and Hovy (2016), ElSherief et al. (2018a), Schäfer (2018). Although

this is quite effective in determining gender, user names don’t often represent an actual

name, especially on social networks such as Twitter. In Waseem and Hovy (2016), only

about 53% of the users have their gender identified, not granting full precision either on

those labelings. This is mainly due to ambiguous names, which may suit male or female

individuals. Besides, it is not guaranteed that a certain user will have a name matching his

gender.

• Text data: this approach is less frequent and doesn’t grant much effectiveness either, since

tweets are short and, more often than not, portray few information about gender. This is a

machine learning classification approach that aims to identify the users’ genders based on

the content of their tweets, using gender-labeled text. There are some data sources that may

be used for this task:

• TwiSty corpus is a multilingual Twitter Stylometry corpus for gender and personality

profiling Verhoeven et al. (2016). It contains information regarding 18,168 authors

(including gender information), for which a set of tweets (id’s) are provided. Using

4.2 Profiling features 63

this data, Schneider et al. (2018) created a model to identify the gender of tweets’

authors for a dataset of German tweets. There is no English version of the data.

• The Twitter14k Dataset, created by Bamman et al. (2014), contains gender informa-

tion of 14,464 Twitter users, with the most frequent gender-labeled n-grams found in

a 9,212,118 tweets corpus.

• The blog-gender dataset is a collection of 3,100 posts from blog hosting sites and blog

search engines, labeled by 2 groups of students that manually checked the profiles of

the authors. The labeling resulted in a set of 1588 (51.2%) blog posts written by men

and 1512 (48.8%) written by women. Each post has an average of 250 words for men

and 330 words for women Mukherjee and Liu (2010).

In this subsection we focus on how users’ gender can influence the detection of hate speech, by

identifying the gender of both tweets’ authors and users mentioned by them. The next sub-sections

described how we implemented these features and the results they achieved.

4.2.2.1 Gender identification approach

Since both approaches have limitations in determining users’ gender, we opted to merge both in

order to hopefully obtain a better classification.

Our gender-identification pipeline consists of, initially, comparing user names to name-gender

dictionaries. This was done using 3 different Python libraries: gender-guesser, Genderize and

NamSor. We computed the label for each Twitter user name and compared the results obtained by

each library, keeping the label output by the majority, i.e. if at least 2 libraries labeled a user as

male, then the final label is male (the same for female). The results for the name-gender approach

are listed in Table 4.2.

Table 4.2: Distribution of users by gender using the name-gender approach.

Female Male Unknown
Number of users 290 222 240
Percentage 39% 30% 31%

This first step managed to successfully label 512 users (out of 760) with their corresponding

gender, while 248 others remained unknown. For these, a text-based approach was conducted. We

trained a TF bag of words model on 70% of the blog data and tested it on the remaining 30%,

keeping a balanced distribution of classes in both train and test sets. We achieved an accuracy of

73% for this task. For each user whose gender had been labeled as unknown, we extracted and

merged a set of 20 tweets and applied the model trained on the blog data. Since this approach is

arguable, as mentioned on the previous sub-section, and a set of users had a low number of tweets

posted, we manually checked the predictions made by the model and compared them against their

profile. The ones whose prediction was clearly wrong (e.g. user identified as female but profile

picture of a man) were changed to what we thought to be their real gender. Users, according to

their gender, are evenly distributed as displayed in Table 4.3. Note that we also considered users

64 User Profiling

with a neutral gender; these include entities such as Fox News, Channel 7, among others. Our

gender identification pipeline is summarized in Figure 4.3.

Table 4.3: Distribution of users by gender.

Female Male Neutral
Number of users 389 351 20
Percentage 51% 46% 5%

Figure 4.2

Figure 4.3: Gender identification pipeline.

4.2.2.2 Gender information features

Following the gender identification pipeline summarized in Figure 4.3, we extracted 2 different

sets of features:

• Feat1: Tweets authors’ gender.

• Feat2: Mentioned users’ gender - for each tweet we extracted the gender of the mentioned

users.

• Feat3: Includes feat1 and feat2, and the sum of number of friends of followers, individually,

for each mentioned user.

Despite being different features, Feat1 is included in Feat2. The latter was extracted in order

to understand whether there was a correlation between the gender of an author and the users’ he

addressed. As mentioned before, instigators and targets are typically characterized by opposing

characteristics, whether it is race, religion or gender, so we think identifying authors and men-

tioned users may be helpful in detecting hate speech online. The results for these features are

displayed in Table 4.4.

4.2 Profiling features 65

Table 4.4: Results obtained for the gender information feat

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.724 71.910 64.000
Feat1 68.421 72.222 65.000
Feat2 70.121 73.530 67.322
Feat3 68.001 70.992 64.320
Improvements (Feat2) 2.4% 1.6% 3.3%

All the gender-related features improved the baseline results for hate speech detection, being

feat2 the one with the best results, with an increase of 2.4% of the f-score, 1.6% of the hate class

precision and 3.3% of the hate class recall.

4.2.3 Data augmentation

Tweets are quite short per se. This makes it hard to identify relevant features that may portray hate

or other related sentiment conveyed by the text. Besides, hate may often be subtle and ambiguous,

making it hard to detect hate speech online.

Data augmentation consists of adding new data points to the original data. It is a common

technique used in machine learning, but also in hate speech in particular. Increasing the dimen-

sionality of the data (up to a certain point) can be beneficial to the prediction task. This was done

in Qian et al. (2018a), denoted as inter-user representation, where tweets with similar content

(from different users) were extracted and added to the data available. Fortuna et al. (2018) also

merged different datasets for better results. Another data augmentation technique, that relies on

users themselves, is the users’ history extraction. Although this doesn’t directly inject data into

the original set, analyzing past tweets may help modeling users’ behavior. In Pitsilis et al. (2018),

a collection of 400 tweets is extracted for each user, aiming to measure their tendency towards a

specific behavior: sexism, racism or neither. This approach produced very good results.

4.2.3.1 User history

We considered an approach similar to the one used in Pitsilis et al. (2018), by extracting a collec-

tion of tweets per user and using them to model their behavior on the social network. We collected

the 200 most recent tweets per user, for all the 760 in our data. We ended up with a dataset

with 92,783 scrapped tweets, considering not all users had made at least 200 posts, and automat-

ically labeled them using the same model as Waseem and Hovy (2016). Again, we converted the

scrapped tweets, automatically labeled as sexist and racist, into a single hate class, similarly to the

methodology conducted in Section 4.1, resulting in a total of 75,353 non hateful and 17,430 hate-

ful tweets. Using the scrapped data, we computed a user score reflecting their tendency towards

hateful behaviors, by considering the number of hateful and total number of tweets posted on each

66 User Profiling

account. The user hate score, ranging from 0 to 1, where 0 is a non hateful user and 1 a hateful

user, is described by Equation 4.1. The results obtained using this feature are listed in Table .

User hate score =
Number o f hate tweets

Number o f tweets
(4.1)

Table 4.5: Results obtained using the user hate score feature

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.724 71.910 64.000
Tendency 68.421 72.222 65.000
Improvement 0.7% 0.3% 1%

4.2.4 User account activity

Tracking the activity of Twitter users’ accounts may be helpful in identifying certain patterns and

characteristics. For example, it is more likely for an extremist, hateful user to have less personal in-

formation publicly available than any other regular user, whether it is a profile picture, description,

etc. Twitter provides some basic metadata about acounts, even for protected users, as described in

Table 2.9. Part of these features, such as the number of friends and followers, may not produce the

best results possible, since users with a sum of friends and followers higher than 400 were filtered

out from the data. The features considered were the following:

Feat1: Profile settings

- Using default image
- Has location
- Has time zone
- Is geo enabled
- Is verified
- Description length
- Name length
- Age (time elapsed since tweet posted and

account creation date)
- Has enabled contributors, i.e. tweets may

be co-authored

Feat2: User activity

- Number of lists
- Number of statuses (tweets and

retweets)
- Number of favourites
- Number of friends
- Number of followers
- Ratio between friends and fol-

lowers

The results using the features described above are described in Table 4.6. The results obtained

by the second group of features, Feat2, don’t have an impact on the model, probably due to the

filtering of users with a high number of friends and followers. Overall, the best group of features

(Feat1) only slightly improve the baseline performance.

4.2 Profiling features 67

Table 4.6: Results obtained by the features related to users’ accounts. The ones in bold have
improved the baseline results.

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.724 71.910 64.000
Feat1 68.102 72.000 64.610
Feat2 66.843 72.199 63.891
Feat1 + Feat2 67.912 71.876 64.142
Improvement
(Feat1) 0.4% 0.1% 0.6%

4.2.5 User network

Social networks, and Twitter in particular, play an important role in propagating information,

ideas, opinions and rumors whether they are positive or negative. This cascading phenomenon

causes the adoption of more related behaviors and opinions by users who are positioned closer

within the whole social network Jin et al. (2013). For this reason, analyzing the networks users

belong to, and their interactions between each other, is an important contribution to improve the de-

tection of hate speech online. Founta et al. (2018), Ribeiro et al. (2018) and Chatzakou et al. (2017)

consider the users’ Twitter network to improve the detection of hate speech, having achieved bet-

ter results when using these features. Chatzakou et al. (2017) claims that network-based features

are the most effective for detecting aggressive user behavior, allegating that bullies post less, par-

ticipate in fewer online communities, and are less popular than regular users. Despite being a

potentially unveiling and novel feature, it is still under explored within the field of hate speech

detection. This is mostly due to limitations, imposed by Twitter itself, regarding the extraction of

such content from the online platform. The extraction of friends and followers from a big number

of users, and their consequent list of interactions, is a rather costly, (mostly) time wise, operation.

For this reason, the data used to extract these features was significantly reduced, as mentioned in

Section 4.1.

4.2.5.1 Ego networks

The approaches mentioned on the previous section don’t provide much in-depth detail regarding

the structure of the network, how it was generated or the interactions modeled. In our approach we

focused on a user-based network analysis, also known as an ego network Chatzakou et al. (2017).

These networks are characterized by having a main, central node - the user - connected to a set

of alters, or secondary nodes - his friends and followers - and are typically good at inferring the

potential for diffusion within the network Easley and Kleinberg (2010). In hate speech detection

this might be useful in detecting the propagation and adoption of hateful behaviors.

A total of 760 different ego networks were generated (one per user), considering, for each,

the interactions between the user and his connections (friends and followers) and whether the

latter were linked with each other or not. The friend/follower connections were differentiated,

68 User Profiling

generating a directed graph. Figure 4.4 provides an example of an ego network for an user with 2

followers and 2 friends, who are connected between themselves.

Figure 4.4: Example of how users’ interactions are modeled in networks. Original users are the
authors of the tweets that are originally part of our data. Scrapped users are the ones extracted
from the originals’ lists of friends and followers.

In order to eventually differentiate hateful and normal users’ ego networks, we computed a set

of statistics associated with the generated directed graphs. We grouped these features according to

the category they belong to: centrality, connectivity, homophily and other subgroups:

Centrality measures Centrality indicators roughly highlight the most important and influential

nodes in a network or graph. Since each graph is generated from specific users belonging to the

data, it is expected that these measures are heavily skewed towards them. The centrality measures

considered for this task are detailed below:

• Betweenness centrality quantifies the number of times a node serves as a bridge along the

shortest path between two other nodes. Introduced by Freeman (1977), it initially served the

purpose of quantifying the control of a human on the communication between other humans

in a social network.

• Closeness centrality measures the distance of a node to the other nodes of the social net-

work, i.e. the extent to which a user is close to each other user in the network Chatzakou

et al. (2017). It indicates how fast information may be spread or a behavior may propagate

from a node to the others, sequentially.

• Degree centrality measures the popularity of a node in a network by counting the number

of connections it is linked to. It may be divided into two sub-measures:

• In degree: amount of incoming connections (user followers).

• Out degree: amount of outgoing connections (user friends).

4.2 Profiling features 69

• Eigenvector centrality measures the influence of a user in his network Chatzakou et al.

(2017), which is assigned a score based on their neighbours’. A node with a high eigenvector

score means that most of it’s neighbors also have high eigenvalues.

Homophily From a general perspective, groups of friends are typically similar when it comes

to their preferences, hobbies, ethnicity or even physical characteristics. This tendency for similar

users to group together is perceptible in social networks, where links tend to connect people who

are similar to one another Easley and Kleinberg (2010). Homophily is the principle behind these

interactions, and may be visible in platforms such as Twitter, where connected peers typically

have similar preferences, e.g. hateful users are more likely to be linked with other hateful users,

whereas regular users are connected with other regular ones Chatzakou et al. (2017). Ego networks

perhaps don’t carry enough information to thoroughly assess similarity between Twitter users, but

there are some statistics that may bring out useful information:

• Average neighbor degree is defined as the probability that a node of degree k is connected

to a node of degree n. This is useful in determining degree-based relations between users

and their neighbors in the network Yao et al. (2017).

• Degree pearson correlation coefficient is a linear correlation measure of the similarity of

connections in the graph with respect to the node degree Foster et al. (2010).

• Average degree connectivity or k-nearest neighbors is a measure that computes the overall

average degree connectivity of the social network Barrat et al. (2004).

Connectivity A graph is considered to be connected if, for every pair of nodes, there is a path

between them Easley and Kleinberg (2010). This isn’t always the case in ego networks, especially

for directed ones, hence analyzing their connectivity might be relevant. Regarding connectivity,

we computed a set of features:

• Connections

- Is connected
- Number of connected components

• Strong connections: a directed graph is strongly connected if and only if every node in the

graph is reachable from every other node.

- Is strongly connected
- Number of strong connections

• Weak connections: A directed graph is weakly connected if and only if the graph is con-

nected when the direction of the edge between nodes is ignored, i.e. if replacing all of its

directed edges with undirected ones produces a connected undirected graph. Note that a

graph may be strongly and weakly connected.

70 User Profiling

- Is weakly connected
- Number of weak connections

Finally, we computed a set of additional features: Hubs and Authority, also considered in

Chatzakou et al. (2017), a couple of measures originally created to rate web pages. The hub score

computes, for a node, the sum of the authority score of the nodes pointing to it. On the other

hand, authority reveals how many different hubs a node is connected to Kleinberg (1999). Lastly,

we computed the average clustering of each ego network. It is defined as the mean of local

clusterings, a measure of the degree to which nodes in a graph tend to cluster together.

Using the features described above, we conducted a set of experiments combining different

sub-groups of features. Table 4.7 summarizes the results obtained and improvements over the

baseline. Centrality measures obtained the best results individually when compared to the other

groups of features, having achieved an improvement of almost 2% of the f-score and about 3% of

the hate class recall. All the other feature groups have also increased the performance measures

of the baseline, whereas the combined features achieved the highest performance, with an overall

improvement of 4.6% and 6% for the f-score and hate class recall, respectively.

Table 4.7: Results obtained by different user network features. All results (in bold) have improved
the baseline performance of the model. Precision and Recall concern the class hate.

F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.724 71.910 64.000
Centrality 69.012 72.331 67.121
Homophily 67.987 73.015 65.326
Connectivity 68.012 72.899 65.107
Others (Hubs, Auth, Clustering) 68.530 72.646 66.123
All features combined 72.333 73.102 70.003
Improvements
(all features) 4.6% 1.2% 6%

Figure 4.5 shows an example of a real ego network, computed using the measures of a user

belonging to our data.

4.2.5.2 Network analysis

In order to fully understand how network measures may have improved the detection of hate

speech, we also computed relations between these statistics and the users’ hate score (ranging

from 0 to 1, where 1 corresponds to a hateful user and 0 to a non-hateful user). It can be inferred

that all centrality measures (eigenvectors, in and out degree, closeness and betweenness) decrease,

for most users, as the hate score increases (Figure 4.6). This means that users with a hateful

history may not be as central in their network, when compared to other social network users.

Similarly, the Hubs and Authority scores also decrease with the increase of the user hate score

(Figure 4.7). On the other hand, the homophily scores (degree pearson correlation coefficient,

average neighbor degree and average degree connectivity) aren’t conclusive (Figure 4.7), since

4.2 Profiling features 71

Figure 4.5: Example of a user ego network and some descriptive statistics associated with the
account. The blue node, on the center of the network, is the ego (main user) and the red ones are
the alters (secondary users).

they fluctuate similarly regardless of the users’ hate score. Finally, as Figure 4.8 shows, users with

an increasing hate score tend to not have regular or weakly connected ego networks.

The observations described above converge with the ones mentioned in Chatzakou et al.

(2017), who claim that hateful users are less participative in online communities and less pop-

ular than regular users, which results in a lower popularity (less central) in their networks.

4.2.6 Features combination and analysis

For each group of user profiling features described in the previous sections, we selected the ones

that performed the best in the validation phase and combined them together to test their perfor-

mance on unseen data (testing set). We computed a baseline using the same features as the ones

described in Subsection 4.2.1, to compare the results obtained by the different combinations. We

started off by testing each feature individually on the testing data and then each possible combina-

tion using a gridsearch approach. This is typically used to optimize hyperparameters in machine

learning tasks by exhaustively searching through a specified subset of hyperparameters Wang et al.

(2015). In this case, we tested which combinations of features output the best results and presented

the 3 best in Table 4.8, along with the results for the features individually.

The overall improvements using user profiling features aren’t directly comparable with the

ones obtained on the previous chapter, considering the data used on the experiments conducted

on this chapter was undoubtedly shorter and probably less informative. Despite this fact, it is un-

equivocal that user profiling features provide the model deeper understanding of the data (hence

72 User Profiling

Figure 4.6: Variation of centrality measures according to user tendency score. The measures on
top, from left to right, are eigenvectors, degree and out degree centrality measures. The measure
on the bottom, from left to right, are in degree, closeness and betweenness centrality. For all
centrality measures it is perceptible that, as users’ tendency score increases, the centrality scores
decrease.

the overall improvements being higher), since they focus on a much wider range of insights re-

garding the authors and not the tweets themselves, which are often short and ambiguous.

4.2.6.1 Limitations

Although all user profiling features improved the baseline performance, they also had some limi-

tations, that eventually inhibited their full potential:

• Gender information may not be exactly precise, since identifying the gender of users is far

from being a trivial task. Our identification approach consisted of 3 different steps (see

Figure 4.3) and, after manually checking a portion of the gender predictions made, we still

had to correct a good number of examples. This is doable for a small set of users, such as

ours, but, for tasks with higher complexity, i.e. with a considerably big number of users, the

effectiveness of the gender identification is arguable. Besides, some profiles aren’t possible

to label, even manually, e.g. profiles with few tweets, no profile picture and uncommon user

names or protected users, not accessible to the public eye.

• Assessing a user’s tendency towards a certain typical behavior isn’t a trivial task either.

This is mostly done through the analysis of their tweets history and whether they may be

considered hateful or not. This classification is done using a pre-trained model which is

likely to be inaccurate or at the very least not fully accurate. Besides, some users don’t have

4.2 Profiling features 73

Figure 4.7: Variation of homophily scores according to users’ tendency score on top. From left
to right, degree pearson correlation coefficient, average neighbor degree and average degree con-
nectivity. On the bottom, from left to right, variation of the authority, hubs and average clustering
coefficient according to users’ tendency score. For these, it is perceptible that, as users’ tendency
score increases, the measures drop.

enough content posted on their accounts to fully cover what their typical behaviors might

be. Protected users can’t also have their history tracked.

• The main limitation regarding ego networks is accessing the friends’ and followers’ lists of

protected users. Although we guaranteed that every user in the data had a public profile,

some of their friends and followers were private. Out of the, approximately, 42,000 users

included in the networks, nearly 3,000 had protected accounts, for which we couldn’t model

potential interactions with others. This is a small number compared to the total of users, but

may influence final results and is likely to escalate for more data.

Although using user profiling techniques are mostly beneficial to improve the detection of

hate speech, extracting these features is not linear. The main limitation is that most datasets don’t

provide the ID’s of the users who posted the tweets listed, as shown on figure 2.4. Furthermore,

the ones that do, often have a part of their users banned as a consequence of posting offensive

comments, which is a portion of what each dataset addresses - hate. Furthermore, the retrieval

of Twitter content is also limited - by Twitter itself. It forces limited access rates (as most public

API’s), complicating mostly the creation of ego networks (and other kind of networks).

74 User Profiling

Figure 4.8: Distribution of the network connectivity type according to the users’ tendency score.
Connected networks on right and weakly connected networks on left. As users’ tendency score
increases, networks tend to be unconnected.

Table 4.8: Results of individual and combined user profiling features.

Features F-score (%) Precision (%)
(Hate class)

Recall (%)
(Hate class)

Baseline 67.913 72.012 64.101

Individual
features

GI 68.799 73.412 65.252
UH 69.011 73.274 65.731
UA 68.211 74.384 64.600
UN 70.322 71.081 68.342

Combined
features

GI + UN 71.448 72.333 68.412
UH + UN 72.321 73.844 69.133
GI + UH + UN 73.634 73.451 71.002
Improvement
(GI + UH + UN) 5.7% 1.4% 7%

Chapter 5

Conclusions and Future work

In this chapter we provide an overview of our goals for this thesis, how we accomplished them and

the results obtained. Besides, we also address limitations concerning the detection of hate speech

and possible improvements to enrich research in this area.

5.1 Goals of our work

Our main goal for this thesis was to improve the field of automatic hate speech detection in

text, with a particular focus on online social networks, specially Twitter. This primary objec-

tive branched out into 2 different sub-goals, being our first one the exploration of the field’s state

of the art, by conducting a systematic literature review. Our first task consisted on fully under-

standing what hate speech is, common targets and what are it’s consequences. Only then, one is

able to successfully identify and detect it.

We concluded that hate speech is an old topic, dating back to at least 1 century ago, that has

been growing significantly over the last couple of decades, with an heavy affluence of people

using social networks, and online means in general, to communicate and interact with each other.

Several sources, including social networks and other entities, proposed a number of definitions

which weren’t always convergent or, at least, missed some points, mainly due to the ambiguity of

the topic. We adopted the definition proposed in [Fortuna (2017)], which successfully wrapped up

all the possible subtleties of hate.

The field of automatic hate speech detection in text was poorly addressed up until mid-2017

and 2018, and the existing approaches were not so popular, with the number of citations averag-

ing around 5. Furthermore, most authors would collect their own data and classify the content

collected, without actually making it publicly available. As any machine learning problem, data

availability is crucial to be able to enrich research by comparing results and approaches. Mostly

in 2018, this topic went through quite an expressive boom with the growing awareness from social

entities and people in general. The number of available papers and articles increased by 5 times

(in 2018), with most approaches focusing on Twitter and the English language. The amount of

datasets available also increased largely, creating a pool of at least 9 different collections of data,

75

76 Conclusions and Future work

targeting, not only English, but also other languages such as German, Spanish, Hindi, etc. Part of

the literature used basic natural language processing techniques to clean and extract features from

the data (e.g. sentiment analysis, semantic features), whereas most recent ones focused on deep

learning approaches, using pre-trained embeddings such as GloVe and Word2Vec.

Conducting an exhaustive review on the topic lead us to formulate a second goal for our thesis,

which we split into 3 other sub-goals. The first one consisted of creating a tokenizer for tweets.

Any text classification problem requires the text constituents to be split. The guidelines to separate

sentences into their tokens are quite vast and vary according to the implementation. We found that

tweets in particular, mostly due to their short length and nature (informal text), required a special

kind of tokenization that would consider hashtags, mentions, hidden profanity (e.g. sh#t) and other

subtleties. The most common Python tokenizers couldn’t offer such a personalized tokenization,

hence we developed our own tweet tokenizer, made available online as a Python package, which

outperformed others in some parameters. We then used this tokenizer in our experiments.

Our second sub-goal consisted of extracting and selecting the text-based features that would

improve the detection of hate speech in text, with special attention to tweets. Thus, we gathered

a collection of the most commonly extracted features used in the literature and grouped them

according to their category. Our approach started off with the data cleaning and preprocessing

techniques. We identified a set of mandatory tweets’ cleaning methods, such as the removal of

URL’s, mentions and HTML codes that we later considered in the semantic analysis. Secondly,

we tested a set of tweet preprocessing features and observed that lowercasing, reducing words

to their root form (stemming and lemmatization), the removal of stopwords and decomposing

hashtags generally contributes to the improvement of the classification task. We also extracted a

set of both sentiment and semantic features and observed that sentiment isn’t a powerful indicator

of hate. On the other hand, analyzing the tweets’ semantics highly contributed to the enhancement

of results. Words and tweet-based features were the ones that contributed the most to improving

the detection of hate speech in text, such as the number of all capitalized words, letters, number

of mentions and URL’s, among others. We also tested different word vectorization techniques

and encodings, and observed that character n-grams generally produce better results than word

n-grams, probably due to the short length of tweets and often occurrence of typos, abbreviations

and other hard-to-identify words. TF encoding also produced better results than TFIDF.

As most of the literature (around 90%) addressed text-based features to detect hate speech, we

noticed a lack of approaches targeting the users themselves. In order to fill this gap, we proposed,

as our final goal, to identify and compare different user profiling features. We started off by

identifying the gender of the users who posted the original tweets of our data, and progressed

to also identify the gender of the mentioned ones. Creating a relationship between the authors’

and mentioned users’ genders improved the results of our baseline. Our second user profiling

feature consisted of a user (hate) tendency score, which was computed based on users’ Twitter

history. For each author, we labeled the tweets posted using a third party pre-trained model and

computed a score ranging from 0 to 1, where 1 was considered to be hateful (all tweets in his

history were labeled as hateful). As a third feature, we also considered settings and characteristics

5.2 Future work 77

of each Twitter account, such as the number of friends and followers, presence of profile picture,

etc. Finally, we generated an ego network for each user, contemplating his connections to friends

and followers but also the interactions between them. We generated a set of statistics, such as

centrality, connectivity and homophily and obtained significant improvements over the baseline

(around 10% on both f score and hate class recall for all user profiling features combined).

After conducting all the experiments we were able to conclude that both text and user-based

features must be considered in order to improve the overall detection of hate speech in text. On

the other hand, we reckon that profiling users isn’t such a trivial task. Twitter poses a set of

limitations, such as users with private accounts, from which we can’t extract relevant information,

coupled with rate limits regarding the API. The generation of ego networks is highly dependant

on both of these limitations, which inhibits the full potential of what we consider and proved to be

the most valuable feature in hate speech detection.

5.2 Future work

Hate speech detection is definitely a research field with a lot of progress to make. We believe

that the starting point is to uniformize, globally, the definition of hate, since a model won’t be

able to generalize something we, humans, aren’t fully aware of. Providing stricter rules and more

uniform guidelines might be the step forward to homogenize the concept, which is mostly unclear

and diverse from country to country.

Regarding the feature extraction and selection, we think that common text-based features are

over explored. These have proven to obtain decent results, but should definitely be combined

with user profiling features. As mentioned before, tweets are often short, ambiguous and often

contain typos and abbreviations which sometimes makes it hard to extract relevant patterns from

tweets. For this reason, we think user profiling techniques should be explored thorough, with

special attention to network-based features which have obtained the best results out of the features

tested.

Lastly, deep learning approaches have demonstrated that results can be significantly improved,

hence their usage may be a step forward in hate speech detection. Since these focus solely on text,

combining them with user profiling features may largely improve results.

78 Conclusions and Future work

References

European comission code of conduct. https://ec.europa.eu/newsroom/just/
document.cfm?doc_id=42985. Accessed: 2018-12-23.

Portuguese constitution. http://bdjur.almedina.net/citem.php?field=item_id&
value=1172842. Accessed: 2018-07-05.

Facebook hate speech definition. https://www.facebook.com/communitystandards/
hate_speech. Accessed: 2018-10-12.

Ilga - international lesbian, gay, bisexual, trans and intersex association. https://ilga.org.
Accessed: 2018-12-15.

Twitter hate speech definition. https://help.twitter.com/en/
rules-and-policies/hateful-conduct-policy. Accessed: 2018-07-05.

Swati Agarwal and Ashish Sureka. Characterizing linguistic attributes for automatic classification
of intent based racist/radicalized posts on tumblr micro-blogging website. Computng Research
Repository, abs/1701.04931, 2017.

Sweta Agrawal and Amit Awekar. Deep learning for detecting cyberbullying across multiple
social media platforms. In European Conference on Information Retrieval 2018, pages 141–
153. Springer, 2018.

Resham Ahluwalia, Evgeniia Shcherbinina, Edward Callow, Anderson Nascimento, and Martine
De Cock. Detecting misogynous tweets. In Proceedings of the Third Workshop on Evaluation
of Human Language Technologies for Iberian Languages (IberEval 2018), co-located with 34th
Conference of the Spanish Society for Natural Language Processing (SEPLN 2018). CEUR
Workshop Proceedings. CEUR-WS. org, Seville, Spain, volume 4, 2018.

Antonios Anagnostou, Ioannis Mollas, and Grigorios Tsoumakas. Hatebusters: A web applica-
tion for actively reporting youtube hate speech. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pages 5796–5798. International
Joint Conferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/841.

Maria Anzovino, Elisabetta Fersini, and Paolo Rosso. Automatic identification and classification
of misogynistic language on twitter. In International Conference on Applications of Natural
Language to Information Systems 2018, pages 57–64. Springer, 2018.

Segun Taofeek Aroyehun and Alexander Gelbukh. Aggression detection in social media: Using
deep neural networks, data augmentation, and pseudo labeling. In Proceedings of the First
Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 90–97. Association
for Computational Linguistics, 2018.

79

https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985
https://ec.europa.eu/newsroom/just/document.cfm?doc_id=42985
http://bdjur.almedina.net/citem.php?field=item_id&value=1172842
http://bdjur.almedina.net/citem.php?field=item_id&value=1172842
https://www.facebook.com/communitystandards/hate_speech
https://www.facebook.com/communitystandards/hate_speech
https://ilga.org
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy
https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy

80 REFERENCES

Isabelle Augenstein, Sebastian Ruder, and Anders Søgaard. Multi-task learning of pairwise
sequence classification tasks over disparate label spaces. Computing Research Repository,
abs/1802.09913, 2018.

Xiaoyu Bai, Flavio Merenda, Claudia Zaghi, Tommaso Caselli, and Malvina Nissim. Rug at
germeval: Detecting offensive speech in german social media. In Proceedings of the GermEval
Workshop 2018, 2018.

David Bamman, Jacob Eisenstein, and Tyler Schnoebelen. Gender identity and lexical variation
in social media. Journal of Sociolinguistics, 18(2):135–160, 2014.

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro Vespignani. The ar-
chitecture of complex weighted networks. Proceedings of the National Academy of Sciences of
the United States of America, 101:3747–52, 04 2004. doi: 10.1073/pnas.0400087101.

Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in svm classifiers. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning, ICML ’00, pages
57–64, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-
2.

Adam Bermingham, Maura Conway, Lisa McInerney, Neil O’Hare, and Alan Smeaton. Combin-
ing social network analysis and sentiment analysis to explore the potential for online radicalisa-
tion. In Advances in Social Networks Analysis and Mining, 20-22 July, 2009, Athens, Greece.,
07 2009. doi: 10.1109/ASONAM.2009.31.

Shanita Biere and Sandjai Bhulai. Hate Speech Detection Using Natural Language Processing
Techniques. Master’s dissertation, Vrije Universiteit Amsterdam, 2018.

Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007. ISBN 9780387310732.

Aditya Bohra, Deepanshu Vijay, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava. A
dataset of hindi-english code-mixed social media text for hate speech detection. In Proceedings
of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and
Emotions in Social Media, pages 36–41. Association for Computational Linguistics, 2018.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN 1573-0565. doi:
10.1023/A:1010933404324.

Sara Bullard. The Ku Klux Klan: A History of Racism & Violence. Diane Publishing, 1998.

Olivier Chapelle. Training a support vector machine in the primal. Neural computation, 19(5):
1155–1178, 2007.

Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, Gianluca
Stringhini, and Athena Vakali. Mean birds: Detecting aggression and bullying on twitter. In
Proceedings of the 2017 ACM on web science conference, pages 13–22. ACM, 2017.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. Computing Research Repository,
abs/1412.3555, 2014.

REFERENCES 81

Maral Dadvar, de FMG Jong, Roeland Ordelman, and Dolf Trieschnigg. Improved cyberbullying
detection using gender information. In Proceedings of the Twelfth Dutch-Belgian Information
Retrieval Workshop (DIR 2012). University of Ghent, 2012.

Ona de Gibert, Naiara Pérez, Aitor García Pablos, and Montse Cuadros. Hate speech dataset from
a white supremacy forum. Computing Research Repository, abs/1809.04444, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. Computing Research Repository,
abs/1810.04805, 2018.

David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly
connected world. Cambridge University Press, 2010.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen, William Yang Wang, and Elizabeth M. Belding.
Hate lingo: A target-based linguistic analysis of hate speech in social media. Computing Re-
search Repository, abs/1804.04257, 2018a.

Mai ElSherief, Shirin Nilizadeh, Dana Nguyen, Giovanni Vigna, and Elizabeth M. Belding.
Peer to peer hate: Hate speech instigators and their targets. Computing Research Repository,
abs/1804.04649, 2018b.

ExplosionAI. Spacy tokenizer, 2015. URL https://spacy.io/api/tokenizer. Online;
accessed 23-11-2018.

Paula Fortuna. Automatic detection of hate speech in text: an overview of the topic and dataset
annotation with hierarchical classes. Master’s dissertation, Faculdade de Engenharia da Uni-
versidade do Porto, 2017.

Paula Fortuna, José Ferreira, Luiz Pires, Guilherme Routar, and Sérgio Nunes. Merging datasets
for aggressive text identification. In Proceedings of the First Workshop on Trolling, Aggression
and Cyberbullying (TRAC-2018), pages 128–139, 2018.

Jacob G Foster, David V Foster, Peter Grassberger, and Maya Paczuski. Edge direction and the
structure of networks. Proceedings of the National Academy of Sciences 2010, 107(24):10815–
10820, 2010.

Antigoni-Maria Founta, Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Athena
Vakali, and Ilias Leontiadis. A unified deep learning architecture for abuse detection. Com-
puting Research Repository, abs/1802.00385, 2018.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages
35–41, 1977.

Simona Frenda and Banerjee Somnath. Deep analysis in aggressive mexican tweets. In Third
Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval
2018), volume 2150, pages 108–113. Ceur Workshop Proceedings, 2018.

Simona Frenda, Ghanem Bilal, et al. Exploration of misogyny in spanish and english tweets.
In Third Workshop on Evaluation of Human Language Technologies for Iberian Languages
(IberEval 2018), volume 2150, pages 260–267. Ceur Workshop Proceedings, 2018.

Ben Friedland. Profanity dictionary, 2013. URL https://pypi.org/project/
profanity/. Online; accessed 18-12-2018.

https://spacy.io/api/tokenizer
https://pypi.org/project/profanity/
https://pypi.org/project/profanity/

82 REFERENCES

Björn Gambäck and Utpal Kumar Sikdar. Using convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on Abusive Language Online, pages 85–90, 2017.

Aditya Gaydhani, Vikrant Doma, Shrikant Kendre, and Laxmi Bhagwat. Detecting hate speech
and offensive language on twitter using machine learning: An n-gram and TFIDF based ap-
proach. Computing Research Repository, abs/1809.08651, 2018.

CJ Hutto Eric Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social
media text. In Eighth International Conference on Weblogs and Social Media (ICWSM-14),
2014.

Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-sampling
word-embedding method. Computing Research Repository, abs/1402.3722, 2014.

Viktor Golem, Mladen Karan, and Jan Šnajder. Combining shallow and deep learning for aggres-
sive text detection. In Proceedings of the First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 188–198, 2018.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N. Asokan. All you need is "love":
Evading hate-speech detection. Computing Research Repository, abs/1808.09115, 2018.

Frank Harrell. Damage caused by classification accuracy and other discontinuous improper accu-
racy scoring rules, Statistical Thinking, 2017. URL http://www.fharrell.com/post/
class-damage/. Online; accessed 20-12-2018.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116, 1998.

Muhammad Okky Ibrohim and Indra Budi. A dataset and preliminaries study for abusive language
detection in indonesian social media. Procedia Computer Science, 135:222–229, 2018.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 604–613. ACM, 1998.

Fang Jin, Edward Dougherty, Parang Saraf, Yang Cao, and Naren Ramakrishnan. Epidemiological
modeling of news and rumors on twitter. In Proceedings of the 7th Workshop on Social Network
Mining and Analysis, page 8. ACM, 2013.

Dan Jurafsky and James H Martin. Speech and language processing, volume 3. Pearson London,
2014.

Timotheus Kampik. Pypi: compound word splitter, 2017. URL https://pypi.org/
project/compound-word-splitter/. Online; accessed 18-10-2018.

Raghav Kapoor, Yaman Kumar, Kshitij Rajput, Rajiv Ratn Shah, Ponnurangam Kumaraguru, and
Roger Zimmermann. Mind your language: Abuse and offense detection for code-switched
languages. Computing Research Repository, abs/1809.08652, 2018.

Gurneet Kaur and Er Neelam Oberai. A review article on naive bayes classifier with various
smoothing techniques. International Journal of Computer Science and Mobile Computing, 3
(10):864–868, 2014.

http://www.fharrell.com/post/class-damage/
http://www.fharrell.com/post/class-damage/
https://pypi.org/project/compound-word-splitter/
https://pypi.org/project/compound-word-splitter/

REFERENCES 83

Taehoon Kim and Kevin Wurster. Pypi: emoji, 2017. URL https://pypi.org/project/
emoji/. Online; accessed 12-11-2018.

Jon M Kleinberg. Hubs, authorities, and communities. ACM computing surveys (CSUR), 31(4es):
5, 1999.

Filip Klubicka and Raquel Fernández. Examining a hate speech corpus for hate speech detection
and popularity prediction. Computing Research Repository, abs/1805.04661, 2018.

Sebastian Köffer, Dennis M Riehle, Steffen Höhenberger, and Jörg Becker. Discussing the value
of automatic hate speech detection in online debates. Multikonferenz Wirtschaftsinformatik
(MKWI 2018): Data Driven X-Turning Data in Value, Leuphana, Germany, 2018.

Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula, and Maheshwar Reddy Chennuru. Trac-1
shared task on aggression identification: Iit (ism) @ coling’18. In Proceedings of the First
Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 58–65, 2018.

Younghun Lee, Seunghyun Yoon, and Kyomin Jung. Comparative studies of detecting abusive
language on twitter. Computing Research Repository, abs/1808.10245, 2018.

Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural language infer-
ence using bidirectional LSTM model and inner-attention. Computing Research Repository,
abs/1605.09090, 2016.

Steven Loria. Textblob, 2013. URL https://textblob.readthedocs.io/en/dev/. On-
line; accessed 15-11-2018.

Promita Maitra and Ritesh Sarkhel. A k-competitive autoencoder for aggression detection in social
media text. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 80–89. Association for Computational Linguistics, 2018.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and Debanjan Mahata. Detecting offensive tweets in
hindi-english code-switched language. In Proceedings of the Sixth International Workshop on
Natural Language Processing for Social Media, pages 18–26, 2018.

Pushkar Mishra, Marco Del Tredici, Helen Yannakoudakis, and Ekaterina Shutova. Author profil-
ing for abuse detection. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1088–1098. Association for Computational Linguistics, 2018a.

Pushkar Mishra, Helen Yannakoudakis, and Ekaterina Shutova. Neural character-based composi-
tion models for abuse detection. Computing Research Repository, abs/1809.00378, 2018b.

Sandip Modha, Prasenjit Majumder, and Thomas Mandl. Filtering aggression from the multi-
lingual social media feed. In Proceedings of the First Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2018), pages 199–207. Association for Computational Linguistics, 2018.

Arjun Mukherjee and Bing Liu. Improving gender classification of blog authors. In Proceedings
of the 2010 conference on Empirical Methods in natural Language Processing, pages 207–217.
Association for Computational Linguistics, 2010.

Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in neuro-
robotics, 7:21, 2013.

https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://textblob.readthedocs.io/en/dev/

84 REFERENCES

Nishant Nikhil, Ramit Pahwa, Mehul Kumar Nirala, and Rohan Khilnani. Lstms with attention
for aggression detection. Computing Research Repository, abs/1807.06151, 2018.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. Abusive lan-
guage detection in online user content. In Proceedings of the 25th international conference on
world wide web, pages 145–153. International World Wide Web Conferences Steering Commit-
tee, 2016.

Constantin Orasan. Aggressive language identification using word embeddings and sentiment
features. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 113–119. Association for Computational Linguistics, 2018.

Endang Wahyu Pamungkas, Alessandra Teresa Cignarella, Valerio Basile, and Viviana Patti. 14-
exlab@ unito for ami at ibereval2018: Exploiting lexical knowledge for detecting misogyny in
english and spanish tweets. In Proceedings of the Third Workshop on Evaluation of Human
Language Technologies for Iberian Languages (IberEval 2018), co-located with 34th Confer-
ence of the Spanish Society for Natural Language Processing (SEPLN 2018). CEUR Workshop
Proceedings. CEUR-WS. org, Seville, Spain, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

Georgios K. Pitsilis, Heri Ramampiaro, and Helge Langseth. Detecting offensive language in
tweets using deep learning. Computing Research Repository, abs/1801.04433, 2018.

David Powers. Evaluation: From precision, recall and f-factor to roc, informedness, markedness
& correlation. Maching Learning Technologies, 2, 01 2008.

Jing Qian, Mai ElSherief, Elizabeth Belding, and William Yang Wang. Leveraging intra-user and
inter-user representation learning for automated hate speech detection. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers), pages 118–123. Association for
Computational Linguistics, 2018a.

Jing Qian, Mai ElSherief, Elizabeth M. Belding, and William Yang Wang. Hierarchical CVAE
for fine-grained hate speech classification. Computing Research Repository, abs/1809.00088,
2018b.

Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma, and Vitor Beires Nogueira. Fully connected
neural network with advance preprocessor to identify aggression over facebook and twitter. In
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018),
pages 28–41, 2018.

Manoel Horta Ribeiro, Pedro H. Calais, Yuri A. Santos, Virgílio A. F. Almeida, and Wagner Meira
Jr. Characterizing and detecting hateful users on Twitter. Computing Research Repository,
abs/1803.08977, 2018.

REFERENCES 85

Julian Risch and Ralf Krestel. Aggression identification using deep learning and data augmenta-
tion. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-
2018), pages 150–158. Association for Computational Linguistics, 2018.

Julian Risch, Eva Krebs, Alexander Löser, Alexander Riese, and Ralf Krestel. Fine-grained clas-
sification of offensive language. In Proceedings of the GermEval Workshop 2018, 2018.

David Robinson, Ziqi Zhang, and Jonathan Tepper. Hate speech detection on Twitter: Feature
engineering vs feature selection. In 15th European Semantic Web Conference 2018, pages 46–
49. Springer, 2018.

Kristian Rother and Achim Rettberg. Ulmfit at germeval-2018: A deep neural language model for
the classification of hate speech in german tweets. In Proceedings of the GermEval Workshop
2018, 09 2018.

Arjun Roy, Prashant Kapil, Kingshuk Basak, and Asif Ekbal. An ensemble approach for aggres-
sion identification in english and hindi text. In Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying (TRAC-2018), pages 66–73, 2018.

Kshitiz Sahay, Harsimran Singh Khaira, Prince Kukreja, and Nishchay Shukla. Detecting cyber-
bullying and aggression in social commentary using nlp and machine learning. International
Journal of Engineering Technology Science and Research, 2018.

Hassan Saif, Miriam Fernandez, Yulan He, and Harith Alani. On stopwords, filtering and data
sparsity for sentiment analysis of twitter. Ninth International Conference on Language Re-
sources and Evaluation, 2014.

Joni Salminen, Hind Almerekhi, Milica Milenkovic, Soon-Gyo Jung, Jisun An, Haewoon Kwak,
and Bernard J. Jansen. Anatomy of online hate: Developing a taxonomy and machine learn-
ing models for identifying and classifying hate in online news media. In The International
Conference on Weblogs and Social Media 2018, 2018.

Niloofar Safi Samghabadi, Deepthi Mave, Sudipta Kar, and Thamar Solorio. Ritual-uh at trac
2018 shared task: Aggression identification. In Proceedings of the First Workshop on Trolling,
Aggression and Cyberbullying (TRAC-2018), 2018.

Yutaka Sasaki. The truth of the f-measure. Teaching, Tutorial materials, Version: 26th October,
2007.

Johannes Schäfer. Hiiwistjs at germeval-2018: Integrating linguistic features in a neural network
for the identification of offensive language in microposts. In Proceedings of the GermEval
Workshop 2018, 2018.

Tatjana Scheffler, Erik Haegert, Santichai Pornavalai, and Mino Lee Sasse. Feature explorations
for hate speech classification. In Proceedings of the GermEval Workshop 2018, volume 6,
page 8, 2018.

Julian Moreno Schneider, Roland Roller, Peter Bourgonje, Stefanie Hegele, and Georg Rehm.
Towards the automatic classification of offensive language and related phenomena in german
tweets. In Proceedings of the GermEval Workshop 2018, 2018.

Hitesh Kumar Sharma and Shailendra Kshitiz. Nlp and machine learning techniques for detect-
ing insulting comments on social networking platforms. In 2018 International Conference on

86 REFERENCES

Advances in Computing and Communication Engineering (ICACCE), pages 265–272. IEEE,
2018.

Sanjana Sharma, Saksham Agrawal, and Manish Shrivastava. Degree based classification of harm-
ful speech using twitter data. Computing Research Repository, abs/1806.04197, 2018.

Koo Ping Shung. Accuracy, precision, recall of f1?, Towards Data Sci-
ence, March, 2018. URL https://towardsdatascience.com/
accuracy-precision-recall-or-f1-331fb37c5cb9. Online; accessed 10-12-
2018.

Leandro Araújo Silva, Mainack Mondal, Denzil Correa, Fabricio Benevenuto, and Ingmar We-
ber. Analyzing the targets of hate in online social media. Computing Research Repository,
abs/1603.07709, 2016a.

Leandro Araújo Silva, Mainack Mondal, Denzil Correa, Fabrício Benevenuto, and Ingmar We-
ber. Analyzing the targets of hate in online social media. In The International Conference on
Weblogs and Social Media 2016, pages 687–690, 2016b.

Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accuracy, f-score and roc:
a family of discriminant measures for performance evaluation. In Sattar A., Kang B. (eds) AI
2006: Advances in Artificial Intelligence. AI 2006, pages 1015–1021. Springer, 2006.

Sandro Sperandei. Understanding logistic regression analysis. Biochemia medica, 24(1):12–18,
2014.

Dominik Stammbach, Azin Zahraei, Polina Stadnikova, and Dietrich Klakow. Offensive language
detection with neural networks for germeval task 2018. In Proceedings of the GermEval Work-
shop 2018, 2018.

Edward Loper Steven Bird. Nltk: stopwords, 2001a. URL http://www.nltk.org/
_modules/nltk/corpus.html. Online; accessed 14-10-2018.

Edward Loper Steven Bird. Nltk: tokenizer, 2001b. URL https://www.nltk.org/api/
nltk.tokenize.html. Online; accessed 10-10-2018.

Liling Tan. Expletives dictionary, 2017. URL https://pypi.org/project/expletives/.
Online; accessed 18-12-2018.

Bin Tang, Michael Shepherd, Evangelos Milios, and Malcolm I Heywood. Comparing and com-
bining dimension reduction techniques for efficient text clustering. In Proceeding of SIAM
international workshop on feature selection for data mining, pages 17–26. Citeseer, 2005.

Alexandru Topîrceanu and Gabriela Grosseck. Decision tree learning used for the classification of
student archetypes in online courses. Procedia Computer Science, 112:51–60, 2017.

Elise Fehn Unsvåg. Investigating the effects of user features in hate speech detection on Twitter.
Master’s thesis, Norwegian University of Science and Technology, 2018.

Betty van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. Challenges for toxic comment
classification: An in-depth error analysis. Computing Research Repository, abs/1809.07572,
2018.

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
http://www.nltk.org/_modules/nltk/corpus.html
http://www.nltk.org/_modules/nltk/corpus.html
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://pypi.org/project/expletives/

REFERENCES 87

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie Mennes, Bart Desmet, Guy De Pauw, Walter
Daelemans, and Véronique Hoste. Detection and fine-grained classification of cyberbullying
events. In International Conference Recent Advances in Natural Language Processing (RANLP)
2015, pages 672–680, 2015.

Cornelis J Van Rijsbergen, Stephen Edward Robertson, and Martin F Porter. New models in prob-
abilistic information retrieval. British Library Research and Development Department London,
1980.

Ben Verhoeven, Walter Daelemans, and Barbara Plank. Twisty: a multilingual twitter stylometry
corpus for gender and personality profiling. In Proceedings of the 10th Annual Conference on
Language Resources and Evaluation (LREC 2016), pages 1–6, 2016.

Michel Verleysen and Damien François. The curse of dimensionality in data mining and time
series prediction. In 15th International Work-Conference on Artificial Neural Networks, pages
758–770. Springer, 2005.

Lidan Wang, Minwei Feng, Bowen Zhou, Bing Xiang, and Sridhar Mahadevan. Efficient hyper-
parameter optimization for nlp applications. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages 2112–2117, 2015.

Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the North American Chapter of the Association
for Computational Linguistics student research workshop, pages 88–93, 2016.

Hajime Watanabe, Mondher Bouazizi, and Tomoaki Ohtsuki. Hate speech on twitter a pragmatic
approach to collect hateful and offensive expressions and perform hate speech detection. IEEE
Access, 2 2018. ISSN 2169-3536.

Gregor Wiedemann, Eugen Ruppert, Raghav Jindal, and Chris Biemann. Transfer learning from
lda to bilstm-cnn for offensive language detection in twitter. In Proceedings of the GermEval
Workshop 2018, 2018.

Dong Yao, Pim van der Hoorn, and Nelly Litvak. Average nearest neighbor degrees in scale-free
networks. Internet Mathematics, 2018, 04 2017.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of CNN and
RNN for natural language processing. Computing Research Repository, abs/1702.01923, 2017.

Ziqi Zhang and Lei Luo. Hate speech detection: A solved problem? the challenging case of long
tail on twitter. Computing Research Repository, abs/1803.03662, 2018.

Ziqi Zhang, David Robinson, and Jonathan Tepper. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In 15th European Semantic Web Conference 2018,
pages 745–760. Springer, 2018.

Steven Zimmerman, Udo Kruschwitz, and Chris Fox. Improving hate speech detection with deep
learning ensembles. In Language Resources and Evaluation Conference 2018, 2018.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goals
	1.2 Outline
	1.3 Language concerns

	2 Hate speech detection: state of the art
	2.1 Systematic literature review
	2.1.1 Methodology
	2.1.2 Documents metadata

	2.2 Hate speech overview
	2.2.1 Origins
	2.2.2 Definition
	2.2.3 Common targets and examples
	2.2.4 Why study hate speech?

	2.3 Literature analytics
	2.3.1 Category
	2.3.2 Documents yearly distribution
	2.3.3 Authors frequency
	2.3.4 Citations frequency
	2.3.5 Keywords distribution
	2.3.6 Languages targeted
	2.3.7 Social networks targeted
	2.3.8 Machine learning approach
	2.3.9 Datasets

	2.4 Data preprocessing and feature extraction
	2.4.1 Text processing techniques
	2.4.1.1 Twitter preprocessing techniques
	2.4.1.2 Text preprocessing summary

	2.4.2 Feature extraction techniques
	2.4.2.1 General features
	2.4.2.2 User features

	2.5 Algorithms and performance metrics
	2.5.1 Algorithms
	2.5.1.1 Deep learning

	2.5.2 Performance metrics
	2.5.3 Results
	2.5.3.1 Waseem & Hoovy
	2.5.3.2 TRAC-1
	2.5.3.3 Germeval

	3 Extraction and selection of textual features
	3.1 Dataset
	3.1.1 Methodology

	3.2 Tweets tokenization
	3.2.1 Common Python tokenizers
	3.2.2 Twikenizer: our tweet tokenizer
	3.2.3 Results comparison

	3.3 Data cleaning
	3.3.1 Preprocessing
	3.3.2 Data dimensionality analysis

	3.4 Feature extraction and selection
	3.4.1 Sentiment analysis
	3.4.2 Semantic analysis
	3.4.2.1 Combined semantic features

	3.4.3 Vectorization
	3.4.3.1 N-grams analysis

	3.4.4 Features combination and analysis

	4 User Profiling
	4.1 Dataset
	4.1.1 Methodology

	4.2 Profiling features
	4.2.1 Baseline
	4.2.2 Gender information
	4.2.2.1 Gender identification approach
	4.2.2.2 Gender information features

	4.2.3 Data augmentation
	4.2.3.1 User history

	4.2.4 User account activity
	4.2.5 User network
	4.2.5.1 Ego networks
	4.2.5.2 Network analysis

	4.2.6 Features combination and analysis
	4.2.6.1 Limitations

	5 Conclusions and Future work
	5.1 Goals of our work
	5.2 Future work

	References

