Hate speech may take different forms in online social media. Most of the investigations in the literature are focused on detecting abusive language in discussions about ethnicity, religion, gender identity and sexual orientation. In this paper, we address the problem of automatic detection and categorization of misogynous language in online social media. The main contribution of this paper is two-fold: (1) a corpus of misogynous tweets, labelled from different perspective and (2) an exploratory investigations on NLP features and ML models for detecting and classifying misogynistic language.